InfoBot Design Draft Process Flow, September 2007
1. Incoming data records ->
InputPatientRecords servlet -> IncomingData table

IncomingData table:

	InputRecordNumber
	auto increment?

	IID
	int

	APID
	int

	RuleSet
	int

	AllTags
	text

	DateTime
	date time

The servlet extracts the IID, APID, and RuleSet tag data, and keeps all other tags together in the AllTags field. The sender of the incoming packets must group data for one patient using the following protocol: The first record for a patient must be of the form:
http://whistler:8080/EMRT/Input?IID=123&APID=3000&ruleset=1&start.
Records with patient data tags may appear in any order thereafter, with one or more data tags per record.
The last record for a patient must be of the form:

http://whistler:8080/EMRT/Input?IID=123&APID=3000&ruleset=1&end.
When the servlet detects the &end tag for a patient with a &start tag, it will initiate processing for that patient by creating a record in the Work In Progress (WIP) table.

For this first prototype, the servlet deletes any previous records in the IncomingData table with the same IID, APID, and RuleSet.
2. The Work Distribution Module (WMD) manages the WIP table, which all subsequent processes use to find and record jobs. Each process works on one patient at a time. Either the WDM or individual processes will delete earlier records for a patient with new records. WMD also manages the APID_Status table.

3. IncomingData table -> IncomingText2Fields process -> IncomingTextByField table.
IncomingTextByField table:

	InputRecordNumber
	int

	IID
	int

	APID
	long int

	RuleSet
	int

	Patient
	varchar

	Problem
	varchar

	Medication
	varchar

	Intervention
	varchar

	History
	varchar

	Anatomy
	varchar

	Other
	varchar

	CTProtocol
	varchar

	FreeText
	varchar

The process parses the AllTags fields for all IncomingData records for one patient. Tags in the AllTags field on the IncomingData records will determine which field is used in the IncomingTextByField record. The table TermTagsTypesAndFields can be used to find relationships between tags (InputTag field) and patient records fields (PatRecField field). There may be one or more output records inserted in IncomingTextByField for this patient, however, redundancies are removed: for example, there may be multiple IncomingData records with &freetext=maintain+blood+glucose, but there should only be one IncomingTextByField record with that string.
4. IncomingTextByField table -> Text2TermsAndDefs process -> InternalPatientRecord table, PatientDefinitions table, and Definitions table.

InternalPatientRecord table

	IID
	int

	APID
	int

	RuleSet
	smallint

	CreateDateTime
	timestamp

	PatientCount
	int

	PatientTerms
	varchar

	Problem Count
	int

	Problem Terms
	varchar

	Medication Count
	int

	Medication Terms
	varchar

	Intervention Count
	int

	Intervention Terms
	varchar

	History Count
	int

	History Terms
	varchar

	AnatomyCount
	Int

	AnatomyTerms
	varchar

	LabTestCount
	int

	LabTestTerms
	varchar

	OtherCount
	int

	OtherTerms
	varchar

	CTProtocol
	varchar

PatientDefinitions table

	IID
	int

	APID
	int

	RuleSet
	smallint

	CreateDateTime
	timestamp

	DefinitionsCount
	int

	Definitions
	text

Definitions table
	CUI_ID
	varchar

	LexMatch
	varchar

	ConcName
	varchar

	SemType
	varchar

	Definition
	varchar

	CreateDateTime
	timestamp

This complex process converts much of the text in IncomingTextByField records for one patient to fields in a single InternalPatientRecord record for that patient. It uses two of the RIDeM services to accomplish that. A rough approximation of the steps are:

4a) Gather data from all IncomingTextByField records for the given patient, maintaining the field type (i.e. Intervention).
4b) Initiate an InternalPatientRecord record for the patient, either in memory, in the database, or both. If Definitions=1 in the RuleSet set for this patient, initiate a PatientDefinitions record for the patient, either in memory, in the database, or both.
4c) Submit each string or word in Patient, Problem, Medication, Intervention, History, Anatomy, Other, or FreeText field in the IncomingTextByField records to the RIDeM &concepts= service. &sender must be ccuser.
4d) There may be zero to many terms returned. For each term (i.e. concept) returned from RIDeM:

· Currently only use terms that are of SemType = problem, drug, intervention, hlca, anatomy, or medd.
· If the same LexMatch term appears more than once, use only one concept. First prioritize by SemType in this order: 1. problem, 2. drug, 3. intervention, 4. anatomy, 5. medd, 6. hlca. If multiple choices remain, select the concept with the shortest edit distance (Levinstein distance) between the ConcName and the LexMatch.
4e) Check to see if the CUI_ID for the term is already part of the patient record. If it is not, add the CUI_ID for the term to the appropriate field in the InternalPatientRecord, based on the semantic type (refer to TermsTagsTypesAndFields table), and increment the associated terms counter.
4d) Useing the CUI_ID, check the Definitions table. If that definition is not in the Definitions table, use the RIDeM &define service to obtain the definition. &sender must be ccuser. Insert the new definition in the Definitions table.
4e) If Definitions=1 in the RuleSet set for this patient, then for each CUI_ID, add the CUI_ID for the term to the PatientDefinitions record and increment the DefinitionsCount.
4f) If there is a CTProtocol value in the IncomingTextByField record, copy the value to the InternalPatientRecord record.

4g) Insert or Update the InternalPatientRecord and PatientDefinitions records.

5. InternalPatientRecord table -> CTProtocol2Terms ->InternalPatientRecord table and PatientDefinitions table (and Definitions table)
The process uses the CTProtocol number to look for additional terms for the patient record. Use the CTProtocol number to build and post the string http://clinicaltrials.gov/ct/show/<number>?displayxml=true , get and parse the xml return (if there is a return). The tags that may contain useful strings are “condition” and “intervention_name”:

 <condition> </condition>

<intervention>

<intervention_type> </intervention_type>

<intervention_name> </intervention_name>

</intervention>

Use the steps outlined for Text2TermsAndDefs process to obtain terms from RIDeM. Only add these CUI_IDs if they are not already part of the patient record.
Add the CUI_ID and definition to the Definitions table if it does not already exist.
Update the InternalPatientRecord and PatientDefinitions records.

6. InternalPatientRecord table -> FindPatientSOPsAndPs ->PatientSOPsAndPs table

PatientSOPsAndPs table
	IID
	int

	APID
	int

	RuleSet
	smallint

	SOPPCount
	int

	SOPPNumbers
	text

If SOPPs=1 in the RuleSet set for this patient, initiate a PatientSOPsAndPs record. Obtain the CUI_IDs from the InternamPatientRecord using only those in the ProblemTerms, MedicationTerms, InterventionTerms, and AnatomyTerms.

For each CUI_ID, get the ConcName for each CUI_ID.
Using the “like” feature, query the IndexTerms of the SOPsAndPs table for any of the ConcName’s. For now, there is no need to search for combinations of terms, so logical ORing is OK.

For unique SOPAndPs records that are a match, add the SOPP number to the PatientSOPsAndPs record and increment the SOPPCount. If the final count is >= 1, insert the record.
Note: The SOPPs index and search strategy are preliminary. There are likely to be changes in both as we gain experience. The IndexTerms are currently the preferred form of MeSH terms assigned to each SOPP by indexer Susanne Humphrey. As such, they are best matched to the ConcName of terms in the patient record. The index has not been reviewed by our CC collaborators and is not finalized.
7. ConstructQueries process

InternalPatientRecord table -> ConstructQueries -> RIDeMQueries table

In addition to the InternalPatientRecord, this process uses the RuleSets table, the Definitions table, and the TermsTagsTypesAndFields table.

RuleSets table

	SetNum
	int

	TermsRuleNum
	int

	PrefixLimit
	varchar

	PostfixLimit
	varchar

	Engine
	varchar

	Target
	varchar

	SOPPs
	tinyint

	Definitions
	tinyint

	Description
	varchar

TermsTagsTypesAndFields table

	InternalPatientRecordField
	varchar

	InputTag
	varchar

	IncomingTextByFieldField
	varchar

	SemType
	varchar

	RIDeMSearchTag
	varchar

	CTProtocolXML
	varchar

RIDeMQueries table

	IID
	int

	APID
	int

	RuleSet
	smallint

	searchEngine
	varchar

	Amount
	tinyint

	QID
	int

	CreateDateTime
	timestamp

	QueryString
	text

	TotalReturned
	tinyint

For each CUI_ID in the ProblemTerms, MedicationTerms, InterventionTerms, and AnatomyTerms fields of the InternalPatientRecord, get the LexMatch text from Definitions. Using the RuleSet value of the patient record, obtain other information for the equivalent SetNum in the RuleSets table. Information includes &search= setting plus any prefex or postfix substrings to add to the full query string. The target service is also identified, although initially RIDeM can be assumed.

Use the TermsTagsTypesAndFields table to determine the appropriate RIDeM search tag for each of the LexMatch terms to be used. Create a RIDeM query for every combination of terms for that patient, including single terms. Insert the query string along with IID, APID, RuleSet, searchEngine, and Amount into RIDeMQueries table. I think QID is automatically generated. Initially, Amount is 5, although we should eventually include this somewhere, possibly as part of the RuleSets. TotalReturned will be empty until the query is executed.

Note: TotalReturned will be updated by the ExecuteQueries process.

8. ExecuteQueries process
RIDeMQueries table -> ExecuteQueries -> RIDeMResults table
Submit each query in the RIDeMQueries table to RIDeM. Store the results in the RIDeMResults table. Update the RIDeMQueries table with the TotalReturned.
