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ABSTRACT 

The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is 
creating a large digital repository of cervicographic images for the study of uterine cervix cancer 
prevention. One of the research goals is to automatically detect diagnostic bio-markers in these images. 
Reliable bio-marker segmentation in large biomedical image collections is a challenging task due to the 
large variation in image appearance. Methods described in this paper focus on segmenting mosaicism, 
which is an important vascular feature used to visually assess the degree of cervical intraepithelial 
neoplasia. The proposed approach uses support vector machines (SVM) trained on a ground truth dataset 
annotated by medical experts (which circumvents the need for vascular structure extraction). We have 
evaluated the performance of the proposed algorithm and experimentally demonstrated its feasibility. 

1. INTRODUCTION 
Cervical cancer has high incidence rate worldwide, especially in under-developed countries. Invasive 
cervical cancers develop slowly and are preceded by a long stage of precursor conditions referred to as 
cervical intraepithelial neoplasia (CIN). CIN is detectable through screening techniques and treatable if 
detected early. Among screening methods used, cervicography is a cost-effective alternative to colposcopy 
in resource-limited areas. Similar to colposcopy, cervicography is based on the visual examination of 
certain changes on the cervix surface following the application of 5% acetic acid solution. The epithelium 
region, which changes color from pink to white with a certain degree of opacity, is of special clinical 
interest due to its suggestion of abnormality. This region is referred to as an acetowhite region. The color 
pictures taken during cervicography using a specially designed optical camera are called cervicographic 
images or cervigrams. Two examples of cervigrams having acetowhite regions are given in Figure 1.  

 

  
(a) Example 1 (b) Example 2 

Figure 1 Examples of cervigrams 

 

Color, opacity, margin shape, and surface contour of acetowhite areas are important features considered by 
physicians in diagnosing disease and severity. In addition vascular abnormality inside acetowhite areas is 
an important feature. Abnormal vascular patterns within acetowhite areas consist of three types: punctation, 
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mosaicism, and atypical vessels [1]. Punctations refer to the appearance of capillaries shown as red / black 
points in a stippling pattern in an end-on view. Mosaicism refers to the appearance of inter-connecting 
blood vessels running parallel to the surface shown as cobbled areas of mosaic pattern. Unlike punctation 
and mosaicism, atypical vessels are irregular vessels having no specific patterns. In our work, we focus on 
identifying mosaicism. Mosaic areas may be classified as fine or coarse, based on vessel caliber and 
intercapillary distance. Coarse mosaic areas (“coarse mosaics”) are formed by vessels having larger caliber 
and larger intercapillary distances, while fine mosaic areas are a network of fine-caliber blood vessels that 
are located close to one another. Coarse mosaics tend to be associated with more severe degrees of 
abnormality, such as high grade CIN lesions and early preclinical invasive cancer. A schematic 
representation of mosaics is shown in Figure 2 and an example of coarse mosaicism in a cervicographic 
image is shown in Figure 3. 

 

  
Figure 2. A schematic representation of mosaics Figure 3. An example of mosaicism 

 

For automated detection of mosaic areas in uterine cervix images, there are very few studies reported in the 
literature. Most of them [2,3,4] are based on extracting vascular structures using a series of mathematical 
morphological operations first, then extracting features as texture measures from those skeletonized 
vascular structures, and classifying them using unsupervised algorithms or minimum-distance classifier. 
The performance of these methods greatly relies on the accuracy of the first step, vascular structure 
extraction, which depends on hand-crafted heuristics and may suffer from over-segmentation. Therefore, a 
more robust method is needed, especially if the repertoire of images under consideration is very large and 
has large variations across images.     

 

The cervigrams under consideration were taken during two major NCI-funded cohort studies in cervical 
cancer, the Guanacaste and ALTS projects. The Guanacaste project is a population-based natural history 
study of human papillomavirus (HPV) and cervical neoplasia in a rural area of Costa Rica [5]. The ALTS 
project was developed in four geographical areas of the United States, enrolling thousands of volunteer 
patients with abnormal Pap smear of ASCUS or LSIL [6]. During these projects, approximately 100,000 
cervigrams were acquired; these have been digitized and archived by the National Library of Medicine 
(NLM) in order to manage, evaluate, and collect information from them, in collaboration with the National 
Cancer Institute (NCI). The cervigrams in the archive have large variations in appearance due to variations 
of illumination and intrinsic content variability, which makes the reliable segmentation of mosaic areas a 
challenging problem. 

 

In this paper, we propose a new method of automatic segmentation and classification of mosaic patterns in 
cervigrams in which a support vector machine (SVM) classifier is applied, using learning from a “ground 
truth” dataset annotated by medical experts in oncology and gynecology. In our approach, the acetowhite 
region is split into tiles, and texture features are extracted from each tile. The SVM classifier is trained 
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using the texture features of tiles obtained from ground truth images. Given a new test image, the trained 
SVM classifier is applied to classify each tile in the test image, and the classified tiles are combined to 
generate the final segmentation map. The beauty of this approach is that it circumvents the step of vascular 
structure extraction used in [2,3,4], while taking full advantage of experts’ knowledge to tackle the problem 
of large variations in appearance of target regions across images. 

  

The rest of the paper is organized as follows. In Section 2, a brief description on the collection of ground 
truth data is provided. Section 3 gives the detailed explanation of the proposed algorithm. The results of 
experimental evaluation of the proposed algorithm and some discussions are presented in Section 4, 
followed by conclusions and future work given in Section 5. 

2. GROUND TRUTH DATA COLLECTION 
To collect the ground truth data used in this study, we used our in-house developed software: the Boundary 
Marking Tool (BMT). The BMT is a Web-accessible Java application which allows gynecologist experts in 
cervical cancer working at geographically dispersed sites to draw boundaries of anatomical regions on the 
image as well as entering a detailed set of data relevant to the evaluation of uterine cervix images [7]. For 
particular regions, the expert may display a detailed view that allows sub-classification of region contents. 
Relating to our study, for example, for acetowhite regions, the presence or absence of mosaicism is 
recorded, along with a classification of the mosaicism as coarse or fine. As shown in Figure 4, the 
acetowhite region (in blue) and the mosaic area inside the acetowhite region (in white) were both marked, 
and the mosaic was classified as coarse by the expert. All these BMT outputs including the spatial 
boundary data are saved as records in a central MySQL database that resides on a server at NLM.  

3. MOSAIC DETECTION USING SVM 

3.1. Pre-processing 
Since abnormal vascular features such as mosaicism are significant only if they are within acetowhite areas 
[1], the first step of mosaicism detection is to extract acetowhite areas, so that searching for mosaicism may 
be confined to these areas.  This approach reduces computation costs and increases detection accuracy. Our 

 
Figure 4. BMT with acetowhite and mosaic areas marked 
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collaborators have been conducting several studies on automatic segmentation and recognition of 
acetowhite epithelium. For example, Greenspan et al. [8] proposed an unsupervised segmentation algorithm 
based on Gaussian mixture models to identify squamous epithelium, columnar epithelium and acetowhite 
lesions. Yang et al. [9] developed a technique based on deterministic annealing and K-means clustering to 
segment and recognize acetowhite regions. Huang et al. [10] proposed a method for automated detection of 
acetowhite lesions using mean-shift clustering and SVM classification. For the work reported in this paper, 
we used cervigrams with acetowhite areas manually marked by medical experts using the BMT, in order to 
de-couple segmentation issues from the problem of mosaicism detection. In our pre-processing, the original 
image is first cropped according to the bounding box of the acetowhite region marked by experts. As 
shown in Figure 1, the area of acetowhite epithelium is only a fraction of the entire image. By this method 
the search space is greatly reduced.     

 

The mosaicism could appear anywhere inside acetowhite regions, with variable shapes and sizes of mosaic 
sub-regions. To handle this variability and uncertainty, the cropped image is split into tiles with fifty 
percent of overlap, texture features are extracted from each tile, and each tile is independently classified as 
mosaic or non-mosaic using the SVM classifier. In implementation, the boundary of the image might be 
expanded based on the size of tile so that the whole acetowhite area will be taken into consideration, as 
illustrated by Figure 5. The index/location of each tile is recorded so that the SVM-classified tiles can be 
recombined into a segmentation map image in the post-processing stage.  

 

 
Figure 5. Illustration of image expansion 

 

3.2. Texture Feature Extraction 
The vascular patterns in cervigrams can be represented and characterized by texture information. In our 
work, we extracted four sets of features from each image tile after applying transforms based on the Gabor 
filter and Log-Gabor filter, discrete wavelet transform, and gray level co-occurrence matrix, respectively. 
The Gabor filter has been widely used for extracting texture features because of its optimal joint 
localization properties in space and frequency. To extract texture features from an image, we transformed 
the image by filtering with a set of Gabor filters of different orientations and spatial frequencies that 
appropriately cover the spatial frequency domain; then we extract certain features from the coefficients of 
the transform. In this study, we applied a Gabor filter bank with  orientations and  scales as described 
in [11]. We used the mean  and standard deviation ( ; ) of the magnitude of 
the transform coefficients to represent the image. We also used the Log-Gabor filter [12], which 
compensates for some limitations of the Gabor filter.  Similarly as for the Gabor filter, we used a filter bank 
with  orientations and  scales, and calculated the mean  and standard deviation  of the 
magnitude of the transform coefficients in the region. To obtain additional, multiscale texture features we 
used the discrete wavelet transform [13]. For each sub-image obtained by applying the discrete wavelet 
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transform to the entire image, we calculated the mean and standard deviation of the magnitude of its 
wavelet coefficients as features. Finally, we applied the gray level co-occurrence matrix (GLCM) to 
capture the spatial dependence of gray-level values by using second-order statistics. Haralick [14] proposed 
a number of statistical features which were derived from the GLCM. We used four of them in our 
application: contrast, correlation, homogeneity, and energy.   

3.3. SVM Training and Classification 
The Support Vector Machine (SVM) is an effective and powerful classification algorithm [15]. It has been 
successfully used in various classification studies including medical applications, such as classifying lesion 
tissues in cervigrams [10] and detecting microcalcifications in mammograms [16]. In this paper, we 
investigated its use on mosaic detection in cervigrams. Specifically, we treated mosaic detection of each tile 
as a two-class classification problem. For each tile, we applied the SVM classifier to determine whether it 
was mosaic or non-mosaic. 

 
Figure 6. Selection of training tiles 

 

The training tiles were obtained as follows. As described in the Section 3.1, each cropped input ground 
truth image was split into tiles with fifty percent overlap. Then, as illustrated in Figure 6, a tile which was 
completely within the mosaic region marked by experts was labeled as a mosaic tile and was treated as a 
positive training example. A tile which was totally inside the acetowhite region, but totally outside the 
mosaic region was labeled as a non-mosaic tile and was treated as a negative training example. Those tiles 
which did not fit in either category were not used as training examples. Let vector denote the feature 
vector extracted from tile . Let scalar  denote the class label of tile .  If tile is 
a mosaic tile, then . If tile is a non-mosaic tile, then . Given the set of 

training examples, the SVM classifier finds the linear hyperplane that maximizes the 
separating margin between the positive and negative training examples in a high-dimensional feature space, 
and obtains the decision function with the form: 

                                                                (1) 

where is the kernel function, the are the model coefficients, and b is the offset of the decision 
boundary from the origin. The coefficients  are obtained by solving the optimization problem: 
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                                  (2) 

The parameter  is the regularization parameter and is selected by the user. A larger  corresponds to 
assigning a higher penalty to the training errors. In this study, the kernel function which implicitly maps 
the input feature vector into a high dimensional feature space is set to be a radial basis function (RBF) 
defined as: 

                                                          (3) 

 

Therefore, given the training examples , only two parameters and  need to be 
determined in order to get the decision function of the SVM. In implementation, the C-support vector 
classification (C-SVC) package of LIBSVM [18], an open source library for SVM, is used.  As suggested 
in [17], in order to obtain good results fast and easily, the data (features) is linearly scaled to [0, 1] and the 
procedure of -fold cross-validation is applied to find the best parameter values for and ; then these  
parameters and  are used to train the whole training set.  

 

Given a new testing image, we first cropped it and split it into tiles as described in the preprocessing step. 
For each testing tile , a feature vector was computed and scaled first, and then classified 
by determining on which side of the decision boundary (the optimal separating hyperplane) it falls; it then  
was assigned one of the class labels +1 or –1, representing a mosaic tile or non-mosaic tile: 

                                    (4) 

3.4. Post-processing 
In this step, the final segmentation map of the mosaic regions was obtained by combining the SVM-
classified tiles. As illustrated in Figure 7, for each sub-tile (the patch with diagonal lines)  whose size was a 
quarter of the size of the tile (because the tiles are fifty-percent overlapped with each other), all the tiles 
that enclose it (there are four tiles for the sub-tile shown in the Figure 7) will be checked. If at least one of 
them is labeled as +1, then the sub-tile is set to be a white (all ones) tile. If all of them are labeled as -1, 
then the sub-tile is set to be a black (all zeros) tile. After obtaining this segmentation map with white area 
indicating the mosaic regions of interest (ROI), the following procedure is applied to further refine the map. 
The area outside the marked acetowhite regions is set to be non-mosaic region since the mosaics are 
significant only when they are confined inside acetowhite regions. The isolated ROI whose area is too 
small (the size of the sub-tile) is removed. Finally, the segmentation map is cropped back to the original 
size if the image had been expanded during the stage of pre-processing.  

 
Figure 7. The generation of segmentation map 
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4. EXPERIMENTS AND DISCUSSION 
We tested the proposed algorithm using a set of cervigrams collected in the NCI Guanacaste and ALTS 
projects and annotated by medical experts, as described in Section 2. This dataset consists of 39 cervigrams 
in which both the boundary of acetowhite regions and the boundary of mosaic regions were expert-marked. 
In the experiment, the cervigrams were divided into two groups, with one group exclusively used as 
training images and the other group exclusively used as testing images.     

 

The size of these color cervigrams is 2400 1640 pixels. The tile size was set to 64 64 pixels, which was 
found to adequately represent mosaic characteristics and result in good segmentation in experimental 
testing. The training group consisted of 19 cervigrams, which corresponds to 674 SVM positive training 
examples and 1789 SVM negative training examples. To extract features from each training example/tile, 
the parameters of texture descriptors were set as follows: for both Gabor filter-based texture descriptors and 
Log-Gabor filter-based texture descriptors, a filter bank with orientations and scales was used, 
which resulted in a feature vector of length 48 , respectively. For 
the DWT-based texture descriptor, a two-level wavelet transform was used, resulting in 7 sub-images and a 
feature vector of length 14 . In the experiment, the GLCM features were calculated 
with 4 directions (0, 45, 90, and 135 degrees) and 4 distances (2, 4, 6, and 8 pixels). Therefore, 16 
displacement vectors were used, and the feature vector contained 64 elements. The intensity of the image 
was quantized into 8 levels to reduce the computation cost. This resulted in a final feature vector length of 
174. To train the SVM classifier with the RBF kernel, a fivefold cross-validation procedure was applied. 
The best cross-validation accuracy of 93 % was achieved when the regularization parameter, , and 
the kernel parameter, . (The cross-validation accuracy is defined as the total number of correctly 
classified examples divided by the total number of examples classified in the procedure of cross-validation 
during training.)   

 

The segmentation performance was initially evaluated by visual inspection. Overall, the proposed 
algorithm appears very promising in identifying the areas where mosaics are located. Eight pairs of 
example testing images are shown in Figure 8, in which all (a) images show the mosaic region marked by 
experts and (b) images show the region generated by the automatic segmentation method. The yellow 
boundary indicates the AW region and blue boundary identifies the mosaic region. The proposed method 
segments the majority of the mosaics, even though the appearance of the repetitive pattern of mosaics is 
variable across images. It bears mentioning that, with careful visual examination and comparison of both 
the ground truth marking and the segmentation results of the proposed approach, we found, for several 
cases, that the algorithm identified some areas which we believe are mosaic areas but which experts did not 
mark. An example is shown in Figure 8.5 (b). Further discussion of the results with experts will be 
conducted in the future to resolve this observation. Another aspect of the results which indicates need for 
further improvement is that, as shown in the results, the boundary of the segmented map is zig-zag due to 
the tile splitting and “piling” (placing tiles adjacently to form a connected region). The performance of 
segmentation was also quantitatively evaluated by two measures: true positive fraction (TPF) and false 
positive fraction (FPF) as defined below 

,                                                                  (5) 

where  denotes the mosaic region marked by experts, denotes its complement,  denotes the mosaic 
ROI segmented by the automatic approach. The TPF was 0.69, and the FPF was 0.16. 
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8.1(a) 8.1(b) 8.2(a) 8.2(b) 

    
8.3(a) 8.3(b) 8.4(a) 8.4(b) 

    
8.5(a) 8.5(b) 8.6(a) 8.6(b) 

  
  

8.7(a) 8.7(b) 8.8(a) 8.8(b) 

Figure 8. Results of mosaic segmentation in pairs.  

(Left, (a): mosaic areas marked by experts. Right, (b): mosaic areas segmented by the proposed method) 

 

5. CONCLUSIONS  
Mosaicism is one of the important vascular abnormalities in cervicography which employs visual 
inspection of the cervix using acetic acid, and is indicative of a lesion with high CIN. Automatic detection 
of mosaicism in cervicographic images is a challenging task especially in a large image collection with 
high variation in appearance of the acetowhite and mosaic regions. In this paper, we have proposed a novel 
segmentation method based on SVM, which circumvents the step of vascular structure extraction, while 
taking advantage of expert knowledge. This work is part of our on-going project of developing a content-
based image retrieval system for the NLM/NCI archive of 100,000 cervigrams [18, 19]. The performance 
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of the proposed algorithm was evaluated and the feasibility of the approach was demonstrated by a five-
fold cross-validation score of 93%. Several tasks on further improving the proposed algorithm for mosaic 
segmentation, such as refinement of the segmentation boundary, testing on a larger dataset, and 
investigating more features, have been identified. 
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