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Abstract

The growing numbers of topically relevant biomedical publications readily available due to

advances in document retrieval methods pose a challenge to clinicians practicing evidence-based

medicine. It is increasingly time consuming to acquire and critically appraise the available

evidence. This problem could be addressed in part if methods were available to automatically

recognize rigorous studies immediately applicable in a specific clinical situation. We approach

the problem of recognizing studies containing useable clinical advice from retrieved topically

relevant articles as a binary classification problem. The gold standard used in the development of

PubMed clinical query filters forms the basis of our approach. We identify scientifically rigorous

studies using supervised machine learning techniques (Naïve Bayes, support vector machine

(SVM), and boosting) trained on high-level semantic features. We combine these methods using

an ensemble learning method (stacking). The performance of learning methods is evaluated

using precision, recall and F1 score, in addition to area under the receiver operating characteristic

(ROC) curve (AUC). Using a training set of 10,000 manually annotated MEDLINE citations,

and a test set of an additional 2,000 citations, we achieve 73.7% precision and 61.5% recall in

identifying rigorous, clinically relevant studies, with stacking over five feature-classifier

combinations and 82.5% precision and 84.3% recall in recognizing rigorous studies with

treatment focus using stacking over word + metadata feature vector. Our results demonstrate that

a high quality gold standard and advanced classification methods can help clinicians acquire best

evidence from the medical literature.

Keywords:  evidence-based medicine, supervised machine learning, natural language processing
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I. INTRODUCTION

Finding high-quality clinical information in a timely fashion is essential to the successful

practice of evidence-based medicine. Evidence-based practice (EBP) is a paradigm that

emphasizes the explicit and judicious use of the best research evidence currently available for

medical decision-making [1]. The most reliable sources of high-quality evidence for clinicians

are systematic reviews of the medical literature that identify, evaluate, and present bottom-line

advice extracted from high quality studies on specific medical topics.

To ensure that all critical information is summarized and brought to a clinician’s attention, the

domain experts who write systematic reviews, practice guidelines, and other secondary resources

need to examine all relevant publications, paying particular attention to content and

methodological criteria. This human-centered approach generates the best EBP resources for

many medical specialties. It is, however, labor intensive and time consuming. Recently,

automated knowledge-based approaches and statistical techniques have shown promise in

identifying high-quality articles and other types of clinical text classifications.

In this paper, we explore the possibility of automatically recognizing MEDLINE® citations

containing scientifically rigorous clinical evidence using supervised machine learning

techniques. We are particularly interested in whether and to what extent semantic features

extracted from MEDLINE citations using natural language processing improve classification

results. We further extend our methods to recognizing MEDLINE citations with rigorous clinical

evidence concerning a specific clinical purpose, focusing on treatment or prevention of disease.

Our ultimate goal is to support EBP by helping domain experts in evaluating and synthesizing

best evidence from the medical literature.
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II. BACKGROUND

A. Clinical Query Filters

To find high-quality articles concerning any aspect of medical practice in MEDLINE,

Wilczynski et al. [2] developed optimal “clinical query filters,” each of which is a Boolean

combination of indexing terms and metadata and is targeted for high specificity or sensitivity for

a particular clinical purpose, such as etiology, diagnosis, prognosis, or treatment. These

strategies were adapted for use by the Clinical Queries feature of PubMed. More recently, Wong

et al. [3] extended these filters to identify qualitative studies. These efforts involved critical

appraisal and manual annotation of 49,028 MEDLINE records from 161 journals published in

2000. This collection created by highly qualified specialists provides the basis for the study

presented in this paper.

B. Related Research

Identification of articles containing high quality clinical evidence can be viewed as a text

classification task. Due to the availability of the OHSUMED collection [4], classification and

categorization of medical text by assigning multiple Medical Subject Headings (MeSH) to a

document is relatively well studied. For example, an F1 score of 0.55 was achieved by using a

hierarchical classifier to assign categories with at least 75 training examples in this collection [5].

A support vector machine (SVM) classifier trained on documents represented as a combination

of a bag-of-words and a “bag-of-biomedical terms” extracted from document titles using

MetaMap [6] achieved an F1 score (harmonic mean of recall and precision) of 0.60 in assigning

634 disease categories to the documents in this collection [7].

Wilcox et al. [8] used five different machine learning techniques to demonstrate that domain

knowledge significantly improves classification of medical text reports. In a comparison of
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classifiers based on domain knowledge (expert-crafted rules), a combination of domain

knowledge and statistical methods (a Bayesian network whose structure was created by experts),

and a supervised machine learning method (decision tree) for classification of radiology reports,

the domain knowledge system slightly outperformed the other two [9].

Aphinyanaphongs et al. [10] used machine learning to automatically construct filters that identify

high-quality, content-specific articles in internal medicine. Drawing on MEDLINE citations

abstracted and cited in the American College of Physicians (ACP) Journal Club, they built two

corpora, one for treatment and etiology and another for prognosis and diagnosis. Their feature set

exploits MeSH indexing terms and publication types assigned by NLM indexers as well as words

in the title and abstract of the citation. The classifiers tested in [10] include Naïve Bayes, SVM,

and text-specific boosting. The polynomial SVM models performed the best, achieving up to

80% (74%-83%) recall and 33% (31%-34%) precision, when classifying articles into the

treatment specific category.  The authors note that training the system on a collection different

from the one used to create the clinical query filters for PubMed is a limitation of the study.

C. SemRep

Medical text lends itself to sophisticated document representation, since significant domain

knowledge has been encoded in the Unified Medical Language System® (UMLS®) [11], and

automatic text processing applications that exploit this knowledge already exist. One such

application is SemRep [12], a knowledge-based system, which extracts semantic predications

from MEDLINE titles and abstracts. Semantic predications consist of UMLS Metathesaurus

concepts as arguments and UMLS Semantic Network relations as predicates. Processing relies

on an underspecified syntactic analysis based on the SPECIALIST Lexicon [13] and MedPost

part-of-speech tagger [14]. MetaMap [6] is used to map simple noun phrases to Metathesaurus
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concepts, and “indicator rules” are used to map syntactic elements to allowable Semantic

Network predicates (TREATS, PREVENTS, INHIBITS, etc.). For example, given the sentence

in (1), SemRep identifies the semantic predications in (2):

(1) Usefulness of massive oral nicorandil in a patient with variant angina refractory to

conventional treatment.

(2) Nicorandil TREATS Patients

      Angina Pectoris, Variant PROCESS_OF Patients

We relied on SemRep for automatic extraction of domain knowledge for our document

classification experiments.

Our research seeks to answer several questions. First, we test whether the results obtained by

Aphinyanahongs et al. [10] using a gold standard that contains articles cited in the ACP Journal

Club generalize to the case in which training is performed on the collection used to develop the

clinical queries. Second, we seek to determine whether combining statistical methods with

domain knowledge obtained through deep semantic processing can improve precision without a

significant degradation in recall in recognizing scientific rigor. Third, we investigate whether

domain knowledge improves the recognition of content-specific rigorous studies, focusing on

treatment–related studies. Finally, we discuss how disparate feature sets contribute to

identification of high-quality, content-specific clinical evidence.

III. METHODS

A. Data Collection

We used the test collection that was manually created to develop the clinical query filters for

PubMed [2]. This collection consists of 49,028 MEDLINE documents, classified across three
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dimensions: human health care interest (yes/no), scientific rigor (yes/no) and purpose (etiology,

prognosis, diagnosis, treatment or prevention, economic studies, clinical prediction guides and

reviews). The scientific rigor label is used only for articles to which a purpose label applies. In

this study, we focused on scientific rigor and ‘treatment or prevention’ content area; of the

49,028 documents, 48,126 are unique and 3,036 (approximately 7%) of these are labeled as

being scientifically rigorous. 2,228 of these 3,036 documents (approximately 5%) are labeled as

being in the ‘treatment or prevention’ content area.

We used a subset of the collection for our experiments. Our training set consisted of 10,000

documents (750 rigorous, 9,250 non-rigorous; 561 of 750 rigorous documents labeled as having

treatment or prevention focus). The test set included 2,000 documents (200 rigorous and 1,800

non-rigorous; 140 with treatment or prevention focus). The documents were randomly selected

from those having at least one MeSH indexing term. The latter requirement explains the higher

percentage of rigorous studies in our subset compared to the whole collection.

B. Machine Learning Methods

As did Aphinyanaphongs et al. [10], we experimented with three supervised machine learning

methods: Naïve Bayes, SVM, and boosting. These three classifiers have reportedly worked well

with text categorization tasks [15]. We further experimented with an ensemble learning method,

stacking [16], to combine predictions of the above three classifiers.

Given a feature f, a Naïve Bayes classifier estimates the probability of class C using the training

data to estimate P(f|C) and predicts the class by applying the maximum a posteriori (MAP)

decision rule. Although its assumption of conditional independence between features often does

not hold, Naïve Bayes classifier performs remarkably well in practice, including in text

classification tasks [17].
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SVM classifiers use “kernel” functions to map the input space to a higher dimensional space

where a maximal separating hyperplane is constructed. This hyperplane corresponds to a

nonlinear boundary in the original input space. Linear and polynomial SVM classifiers have been

used successfully in text categorization tasks.

Boosting is based on the intuition that a set of simple classifiers (weak learners) can be combined

into a single, highly accurate classifier (strong learner). In an iterative process, boosting weighs

training instances and places higher weights on more difficult training instances in subsequent

iterations. A weak learner is then trained using the weighted data set and added to the final strong

learner. By combining weak learners, boosting reduces the learner bias without significantly

affecting the variance. One of the boosting-based algorithms, BoosTexter, uses very simple

decision rules, called “decision stumps” and has been successfully applied to text categorization

[18].

Stacked generalization (or stacking), introduced by Wolpert [19], is expected to reduce the

classification error rate through a process equivalent to cross-validation in some special cases, or

through forming a linear combination of the guesses in other special cases. Our stacking

approach combines predictions from lower-level models into a higher-level model using a

version of least squares linear regression adapted for classification [20]. This multiple linear

regression (MLR) meta-classifier has been shown to outperform other methods of combining

classifiers [20].

We applied these methods to two binary classification tasks: learning models that identify high

quality, methodologically rigorous MEDLINE articles and those that identify rigorous

MEDLINE articles focusing on treatment or prevention of disease. We used the Naïve Bayes,

polynomial SVM, and boosting with decision stumps classifiers provided in the RapidMiner
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machine learning and data mining package [21] and our own implementation of the stacking

classifier [22]. In training the classifiers on the 10,000 training documents, we split the training

corpus into ten sets of equal size and performed 10-fold cross validation to avoid overfitting. We

did not attempt parameter optimization and used the default settings for the classifiers, presented

in Table 1.
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Table 1. Classifier parameters

Classifier Parameters used

Naïve Bayes Smoothing value=1

Polynomial SVM C (regularization constant) = 1

Degree = 2

Misclassification cost = 0.1

Maximum # of iterations = 50,000

Boosting # of boosting iterations = 10
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We performed stacking in two ways: one method involved combining predictions from the three

base classifiers applied to a specific feature vector (feature stacking). In the second stacking

scenario, predictions from different base classifiers applied to disparate, basic feature vectors

(see the section below) were combined (feature-classifier stacking).

C. Feature Vectors

To determine the contribution of various feature types to the classification task, we experimented

with combinations of five non-overlapping basic feature vectors extracted from documents. The

five basic feature types are presented below. We use the words in parentheses to refer to them in

the rest of this paper.

(1) Words in the title and abstract of a MEDLINE citation (word)

(2) Metadata from a MEDLINE citation (metadata)

(3) Semantic predications identified by SemRep (predication)

(4) UMLS Metathesaurus concepts extracted from title and abstract of the MEDLINE citation

(entity)

(5) UMLS Semantic Network relations used in semantic predications (relation)

Metadata from MEDLINE are MeSH indexing terms (headings and subheadings) and

publication types assigned manually by NLM indexers. A semantic predication extracted from

the title or abstract of a MEDLINE citation, such as Nicorandil TREATS Patients noted above,

has relation TREATS and entities Nicorandil and Patients. While there are 32 possible

combinations of these five feature types, we focus on the four combinations given below.

(1) word + metadata [10] (2,000 features)

(2) word + metadata + entity + relation (3,034 features)
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(3) entity + metadata (2,000 features)

(4) entity + relation (1,034 features)

We selected these combinations after several iterations, as they allow assessing the contribution

of domain knowledge to the classification task.

The preprocessing steps included creating the basic feature vectors and their combinations as

well as feature selection. To create the word feature set, we tokenized the titles and abstracts of

the training documents, eliminated PubMed stop words [23], stemmed the remaining words

using the Porter stemmer [24], and removed the stems that occurred fewer than three times in the

training corpus. This processing yielded a total of 10,906 features consisting of word stems. We

then weighted the stems using information gain measure [25], to identify the most informative

stems and considered only the 1,000 features with the highest weights. Each document was then

encoded with the number of occurrences of selected word stems. Although 1,000 was chosen

arbitrarily, our experiments confirmed it as near optimal. Doubling the size of the word feature

vector did not yield any significant improvement in the performance of the learning algorithms.

The highest-ranking 1,000 metadata features were obtained in a similar manner. Each MeSH

heading/subheading pair was encoded as a single feature. Stemming and stop word elimination

were not necessary in this case.

Semantic predications were identified using SemRep and the semantic features (predication,

entity, relation) were extracted from SemRep output files. As with metadata, stemming and stop

word elimination were not performed. For the predication and entity feature vectors, the top

1,000 features were used. On the other hand, no additional feature selection was performed for

the relation feature vector, as there were only 34 unique relations.
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D. Evaluation

We evaluated and compared the effectiveness of the learning techniques and feature selection on

a test corpus of 2,000 documents. We calculated precision, recall and F1 score as well as the area

under the receiver operating characteristic (ROC) curve (AUC). ROC data points were plotted

and obtained by varying the confidence threshold value between the POSITIVE and NEGATIVE

classes. AUC was calculated as the pessimistic estimation, using only the area of all rectangles

under the ROC curve. To measure the statistical significance of performance differences between

pairs of different classifiers, we used the pairwise t-test.

IV. RESULTS

We report both the classification results obtained in the ten-fold cross-validation performed on

the training set of 10,000 documents and the results obtained on the held-out test set of 2,000

documents that were not used for training.

A. Recognizing Methodologically Rigorous Studies

In cross validation, the polynomial SVM using the word + metadata + entity + relation feature

vector performed best in terms of average AUC (0.957) and precision (83.2%). The Naïve Bayes

classifier using the word + metadata feature vector provided the best average recall (83.9%),

while the same classifier using the metadata + entity vector gave the best average F1 score

(0.690). Overall, boosting achieved the best balance of precision and recall, and the polynomial

SVM yielded the best average AUC. Among feature vectors, the word + metadata + entity +

relation vector performed best, followed by the metadata + entity.

The results obtained with cross validation were not, however, predictive of performance in the

held-out test set. Classifier performances were similar to those in cross validation, whereas
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feature vector performances differed. Focusing on classifiers, the polynomial SVM with the

metadata + entity vector gave the best AUC (0.916). On the other hand, boosting performed best

in terms of precision and F1 score (81.7% and 0.659, respectively) on this feature vector. As with

cross validation, Naïve Bayes using the word + metadata feature vector provided the best recall

(97.5%), at the expense of low precision (13.8%). In considering features, despite moderately

strong results in cross validation, vectors including the word feature set performed relatively

poorly on the held-out test set, particularly in terms of precision. The metadata + entity feature

vector achieved the best overall classification results. The entity + relation and the word +

metadata + entity + relation feature vectors are next best and provide comparable results. The

former emphasizes precision and overall F1 score, whereas the latter emphasizes recall. Feature

stacking had limited success overall. While it did not yield the best performance in any

evaluation metric category, it achieved a better balance between F1 score and AUC with entity +

relation and metadata + entity feature vectors. For each feature vector scenario, the difference

between the performances of pairs of classifiers was found to be statistically significant at the

0.01 level. The evaluation results on the held-out test set are given in Table 2. Figure 1 depicts

the ROC curve for the metadata + entity feature vector.
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Table 2. Evaluation results on the held-out test set using various combinations of features in

recognizing methodologically rigorous studies

Feature Vector Classifier Precision Recall F1 Score AUC

Naïve Bayes 13.8% 97.5% 0.241 0.819

Poly. SVM 26.5% 38.5% 0.321 0.783

Boosting 50.7% 56.0% 0.532 0.828

word + metadata

Stacking 27.0% 64.5% 0.465 0.804

Naïve Bayes 55.1% 65.0% 0.596 0.792

Poly. SVM 75.0% 22.5% 0.346 0.906

Boosting 81.7% 44.5% 0.576 0.852

entity + relation

Stacking 61.2% 67.0% 0.640 0.900

Naïve Bayes 56.4% 68.0% 0.617 0.850

Poly. SVM 81.6% 20.0% 0.321 0.916

Boosting 76.3% 58.0% 0.659 0.855

metadata + entity

Stacking 65.0% 64.0% 0.645 0.904

Naïve Bayes 17.5% 93.5% 0.295 0.863

Poly. SVM 36.2% 31.5% 0.337 0.825

Boosting 76.3% 58.0% 0.659 0.855

word + metadata + entity

+ relation

Stacking 37.0% 63.5% 0.468 0.855
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Figure 1. ROC curve for scientifically rigorous studies: base classifiers and feature stacking use

the best feature vector (metadata + entity) and the feature-classifier stacking uses the

combination metadata(NB) + entity(SVM) + predication(NB) + relation(SVM) + relation(B).
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B. Recognizing Rigorous Treatment-Related Studies

One of the goals of this study was to further pursue machine learning methods for identifying

high-quality, scientifically rigorous treatment-related articles as reported in [10], using a

different, more comprehensive gold standard. To this end, we repeated the experiments described

in [10] using the word + metadata feature vector and our data collection. The results differed

significantly, suggesting limited portability of the learning models. Naïve Bayes (0.978), rather

than polynomial SVM (0.962), performed best in terms of average AUC in 10-fold cross

validation. On the other hand, boosting resulted in an AUC of 0.968, while it provided the best

results in terms of F1 score (0.695), followed by Naïve Bayes (0.641) and polynomial SVM

(0.430). The results obtained on the held-out test set were relatively consistent with those

obtained in cross validation. Boosting, rather than Naïve Bayes, provided the best AUC and

precision in addition to F1 score, while the Naïve Bayes classifier yielded the best recall. The

performance difference between pairs of classifiers was found to be significant at the 0.01 level.

In addition to the word + metadata feature vector, we experimented with the three feature

vectors that were also exploited for identifying rigorous articles. In cross validation, in terms of

AUC and recall, Naïve Bayes with the word + metadata feature vector was superior to other

feature combinations and base classifiers. On the other hand, the word + metadata + entity +

relation feature combination with polynomial SVM provided the best precision (80.1%) and

achieved the highest F1 score of 0.727 with boosting. The results obtained in cross validation

were predictive of those obtained on the held-out test set; best recall and AUC were again

obtained with the word + metadata feature vector, latter with the boosting classifier. The word +

metadata + entity + relation feature vector with boosting yielded the best F1 score (0.773), while
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it was outperformed by the combination of polynomial SVM classifier and the metadata + entity

vector in terms of precision (86.5%).

Feature stacking was more successful in finding rigorous treatment related studies. In all four

scenarios, AUC improved compared to the best performing classifier, whereas F1 score improved

in all but one scenario.  On the other hand, precision and recall are almost always lower than

those achieved by the best performing classifier. The differences between the performances of

classifier pairs for each feature vector were found to be statistically significant at the 0.01 level.

The results on the held-out test set in identifying treatment-related articles are presented in Table

3. ROC curve regarding the best feature vector (word + metadata + entity + relation) is given in

Figure 2.
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Table 3. Test set evaluation of classifiers trained on various feature vectors in recognizing

rigorous, treatment-related articles

Feature Vector Classifier Precision Recall F1 Score AUC

Naïve Bayes 53.2% 88.6% 0.665 0.967

Poly. SVM 73.5% 25.7% 0.381 0.962

Boosting 76.9% 71.4% 0.741 0.976

word + metadata

Stacking 82.5% 84.3% 0.834 0.978

Naïve Bayes 55.7% 80.7% 0.659 0.927

Poly. SVM 81.6% 28.6% 0.423 0.947

Boosting 79.4% 57.9% 0.669 0.941

entity + relation

Stacking 72.5% 71.4% 0.719 0.970

Naïve Bayes 54.5% 86.4% 0.669 0.965

Poly. SVM 86.5% 22.9% 0.361 0.961

Boosting 79.1% 72.9% 0.758 0.960

metadata + entity

Stacking 68.0% 83.6% 0.750 0.970

Naïve Bayes 52.5% 91.4% 0.667 0.961

Poly. SVM 81.3% 27.9% 0.415 0.965

Boosting 82.3% 72.9% 0.773 0.972

word + metadata + entity +

relation

Stacking 74.7% 86.4% 0.801 0.983
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Figure 2. ROC curve in identifying treatment-related scientifically rigorous studies: the base

classifiers and the stacking classifier use the best feature vector (word + metadata + entity +

relation)
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C. Stacking with different feature vectors (feature-classifier stacking)

Stacking can be applied to predictions from different classifiers trained on a single feature

vector. Another possibility is to use stacking to combine predictions from different classifiers

trained using different features. Low performance of the first type of stacking in recognizing

scientifically rigorous studies motivated us to further explore the second option. For this purpose,

we trained basic feature vectors separately on the three base classifiers and exhaustively stacked

predictions from all combinations of classifiers and feature vectors. Evaluation results regarding

the combinations that achieve the best performance in one of the evaluation metrics on the held-

out test set are presented in Table 4. The last row of Table 4 shows the feature vector-classifier

combination that achieves the best balance of F1 score and AUC. The combination that provided

the best AUC (first row) is also depicted in the ROC curve in Figure 1.

In general, feature-classifier stacking improves over feature stacking. All but one (fourth row) of

the combinations shown in Table 4 achieve better AUC-F1 score balance than that achieved by

the best base classifier (metadata + entity feature vector with boosting).
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Table 4. Evaluation results for stacking with various feature-classifier combinations (NB: Naïve

Bayes, SVM: Polynomial SVM, B: boosting)

Feature Vector – Classifier Combination Precision Recall F1 Score AUC

metadata(NB) + entity(SVM) +

predication(NB) + relation(SVM) +

relation(B)

73.0% 58.0% 0.646 0.919

word(SVM) + metadata(NB) + entity(NB)

+ entity(SVM) + entity(B)

73.7% 61.5% 0.670 0.892

metadata(NB) + entity(NB) + entity(SVM)

+ relation(SVM) + relation(B)

79.6% 56.5% 0.661 0.912

word(NB) + metadata(B) + entity(B) +

predication(SVM) + predication(B)

26.0% 88.0% 0.401 0.819

metadata(NB) + entity(NB) + entity(SVM)

+ predication(SVM) + relation(B)

72.1% 62.0% 0.667 0.908
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V. DISCUSSION

Our preliminary results confirm findings of Aphinyanaphongs et al. [10] that machine learning

approaches can be used to recognize the methodologically rigorous articles that form the basis of

evidence-based medicine, using a well-constructed, comprehensive collection of annotated

documents and sophisticated document representation. Furthermore, these results indicate that

machine learning methods can also help to identify scientifically rigorous studies with a more

specific treatment or prevention focus.

A. Scientific Rigor

In recognizing scientifically rigorous articles in general, the word features were less effective

than the metadata and entity features. The word features performed fairly well in cross

validation; however, they were less successful than expected on the test set, indicating that the

training and test sets may have different word characteristics or that the size of the test set may

be too small. The entity features essentially address synonymy and multi-word expressions in the

medical domain by normalizing terms to UMLS Metathesaurus concepts, and our results

demonstrate that normalization benefits the recognition of rigorous articles. Similarly, the

metadata features, particularly manually assigned MeSH indexing terms, are a higher-level

representation of article content and perform comparably to the entity features, benefiting the

classification task. The effectiveness of the metadata and entity features most probably stems

from their ability to capture and standardize the essence of the scientifically rigorous studies.

The relation features are few and they contribute slightly but positively to overall performance.

On the other hand, the predication features, while yielding the best precision among feature

vectors consisting of a single feature type when used with boosting (not shown), often have a
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detrimental or very little effect on performance, perhaps due to the underspecified approach of

SemRep to text analysis. However, to a limited extent, it seems to contribute to stacking, as

shown in Table 4.  Not surprisingly, metadata + entity feature vector combination achieves the

best overall results.

Regarding the base classifiers used in identifying methodologically rigorous studies, boosting

consistently strikes the best balance between precision and recall, whereas Naïve Bayes in

general performs well on recall (demonstrating a tradeoff between recall and precision), as does

polynomial SVM on precision. The AUC results are mixed, although boosting has a slight edge

overall. These results demonstrate that different classifiers can be used to satisfy different

information needs (SVM for specificity, Naïve Bayes for sensitivity and boosting for balance

between the two, for example).

Feature stacking seems to have an averaging effect over the predictions of the base classifiers,

making it potentially useful in terms of achieving a sensitivity-specificity balance, similar to

boosting. On the other hand, feature-classifier stacking improves over base classifier

performance, demonstrating the value of combining models learned on disparate feature vectors

over naively combining disparate features into a single large feature vector for supervised

learning.

B. Treatment-related Scientific Rigor

Based on the commonly used word + metadata feature set on a different gold standard, we

obtained results significantly different than those reported in [10] for recognizing treatment

studies. Boosting and, to an extent Naïve Bayes, outperformed the polynomial SVM classifier,

reportedly yielding the best performance. Considering that ACP Journal Club inclusion criteria
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are the same as those used in creating our gold standard, these results may be due to a larger ratio

of POSITIVE examples in our training set (5.6% vs. 2.4% in [10]).

Regarding features in recognizing high-quality treatment studies, word features had more success

than in recognizing rigorous studies in general. On the other hand, entity and metadata features

again contribute the most to the classification task, whereas relation features provide slight

improvement and predication features have little positive effect. Overall, word + metadata +

entity + relation achieves the best performance, although metadata + entity provides comparable

performance with fewer features, confirming the dominance of metadata and entity features.

Among machine learning techniques, boosting achieves the best performance in terms of F1

score, while Naïve Bayes consistently gives the highest recall in each scenario. Results with

polynomial SVM are mixed; it yields the lowest recall consistently, while achieving precision

similar to that achieved with boosting. As in scientific rigor recognition, there is no clear winner

in terms of AUC, with boosting being slightly better than the other two classifiers. These results

confirm the conclusion that we reached regarding rigorous study recognition: that each base

classifier satisfies a different information need. In identifying treatment-related rigorous studies,

stacking improves classification performance significantly, even with feature stacking, which

provided little improvement in recognizing rigorous studies in general.

Significantly better results obtained in recognizing high quality treatment-oriented studies

confirm the findings of Aphinyanaphongs et al. [10], who had less success in identifying

diagnosis-, prognosis- and etiology-related studies. This is partly due to relatively small number

of studies in the gold standard related to these clinical aspects.
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Overall, the results demonstrate that sophisticated document representation using domain

knowledge encoded with UMLS Metathesaurus concepts and UMLS Semantic Network

relations, automatically extracted using natural language processing, as well as MeSH indexing

terms and publication type manually added to the documents provide considerable value for

classification effectiveness.

Our supervised machine learning classification approach depends on manual annotation

performed by domain experts. Although we demonstrate successful reuse of the collection

created independently and prior to our study, it would be highly desirable to develop alternative

methods, for example, weakly supervised machine learning, active learning, and dynamic

selection of documents for annotation. These methods have a potential to achieve equivalent

classification results using small training sets which would significantly reduce the annotation

effort.

VI. FUTURE WORK

We are interested in extending recognition of high-quality, treatment-related studies to other

clinical purposes, such as diagnosis and prognosis. Exploiting the entire gold standard will be

instrumental in this research.

Our empirically determined feature reduction was near optimal; however, more theoretically

sound dimensionality reduction techniques will be employed in the future. We did not focus on

optimizing the classifier parameters in this study and simply used parameters that led to high

accuracy in previous studies. For instance, parameter optimization combined with the choice of a

good kernel may further improve performance of an SVM classifier.
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VII. CONCLUSION

Using a hand-annotated database of MEDLINE citations, we conducted experiments exploring

the role of higher-level semantic features in supervised machine learning techniques for

identifying rigorous scientific studies to support evidence-based practice. To the best of our

knowledge, this is the first exploration of higher-level semantic features in identification of

scientifically rigorous studies. The high level semantic features, particularly entities identified

with natural language processing, had a significant positive effect on classification results.

Manually assigned metadata improved classification effectiveness, as well. In addition, we show

that combining commonly used classifiers and disparate features in various ways using stacking

further improves recognition of rigorous studies.  We demonstrate that the high quality set of

annotated documents and advanced supervised classification methods support a system that

shows considerable promise in helping clinicians acquire best evidence from the medical

literature.
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