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Abstract The biomedical community makes extensive use of text mining tech-
nology. In the past several years, enormous progress has been made
in developing tools and methods, and the community has been witness
to some exciting developments. Although the state of the community
is regularly reviewed, the sheer volume of work related to biomedical
text mining and the rapid pace in which progress continues to be made
make this a worthwhile, if not necessary, endeavor. This chapter pro-
vides a brief overview of the current state of text mining in the biomed-
ical domain. Emphasis is placed on the resources and tools available
to biomedical researchers and practitioners, as well as the major text
mining tasks of interest to the community. These tasks include the
recognition of explicit facts from biomedical literature, the discovery
of previously unknown or implicit facts, document summarization, and
question answering. For each topic, its basic challenges and methods
are outlined and recent and influential work is reviewed.
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1. Introduction

The state of biomedical text mining is reviewed relatively regularly. The
recent surveys [238, 237], special journal issues [85, 29], and books [12]
in this area indicate that general-purpose text and data mining tools are
not well-suited for the biomedical domain because it is highly specialized.

Despite the restricted nature of the domain, biomedical text mining
is of interest not only to researchers but to the general public as well
(perhaps unbeknownst to them). The recent biomedical advances that
have prevented or altered the course of many diseases are undoubtedly
valued by all. Progress in biomedicine is attributable to advances in the
understanding of disease mechanisms and the societal and commercial
value of researching these mechanisms as well as the approaches for the
prevention and cure of diseases.

Biomedical text mining holds the promise of, and in some cases deliv-
ers a reduction in cost and an acceleration of discovery, providing timely
access to needed facts and explicit and implicit associations among facts.

Due to the specific goals of biomedical text mining, biologists and clin-
icians are better positioned to define useful text mining tasks. Cohen
and Hunter [33] note that the most fruitful approaches to biomedical text
mining will combine the efforts and leverage the abilities of both biolo-
gists and computational linguists. Biologists and clinicians will leverage
their ability to focus on specific tasks and experience in using the un-
paralleled publicly available domain-specific knowledge sources whereas
text mining specialists will provide system components and design and
evaluate methods.

The sheer size of the so-called bibliome (the entirety of the texts rel-
evant to biology and medicine) dictates a stepwise approach to biomed-
ical text mining. The goal of the first step is to reduce the set of text
documents to be mined. This reduction is most commonly achieved
using domain-specific information retrieval approaches, as described in
Information Retrieval: A Health and Biomedical Perspective [65]. Al-
ternatively, document sets can be selected using clustering and classifi-
cation [98, 177, 22]. As discussed later in this chapter, the meaning and
grammar of biomedical texts are so intertwined that all surveys dedicate
a section to natural language preprocessing and grammatical analysis.
However, this chapter presents these methods (e.g., tokenization, part-
of-speech tagging, parsing, etc.) as needed to describe the reviewed text
mining approaches.

This survey of recent advances in biomedical text mining begins with
a discussion of the resources available for mining the biomedical liter-
ature. It then proceeds to describe the basic tasks of named entity
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recognition and relation and event extraction. The more complex tasks
of summarization, question answering, and literature based discovery are
described thereafter. The chapter concludes with a discussion of open
tasks and potentially high-impact avenues for further development of the
domain.

2. Resources for Biomedical Text Mining

The primary resource for biomedical text mining is obviously text, and
this section introduces some widely-used text collections in the biomedi-
cal domain. Although text mining does not require the use of specialized
or annotated corpora, manually annotated collections are often more use-
ful than the original texts alone. For example, the original conception
of literature-based discovery [189] was facilitated by the use of Medi-
cal Subject Headings (MeSH R©), which are controlled vocabulary terms
added to bibliographic citations during the process of MEDLINE R© in-
dexing. With the growth of publicly available annotated collections,
the biomedical language processing community has begun focusing on
common interchangeable annotation formats, guidelines, and standards,
which this section also discusses. After describing these resources, the
section concludes with a description of equally important lexical and
knowledge-based repositories, widely-used biomedical text mining tools
and frameworks, and registries that provide overviews and links to text
collections and other resources.

2.1 Corpora

Whether text mining is viewed in the strict sense of discovery or in
the broader sense that includes all text processing and retrieval steps
leading towards discovery, MEDLINE was the first—and remains the
primary—resource in biomedical text mining. The MEDLINE database
contains bibliographic references to journal articles in the life sciences
with a concentration on biomedicine, and it is maintained by the U. S.
National Library of Medicine R© (NLM R©). The 2011 MEDLINE contains
over 18 million references published from 1946 to the present in over
5,500 journals worldwide.

Abstracts of biomedical literature can be obtained in a variety of dif-
ferent ways. For text mining purposes, MEDLINE/PubMed R© records
can be downloaded using the Entrez Programming Utilities [131]. Al-
ternatively, subsets of MEDLINE citations can be obtained from the
archives of community-wide evaluations that use MEDLINE, as well as
individual research groups that share their annotations. Such collec-
tions include the historic OHSUMED [200] set containing all MEDLINE
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citations in 270 medical journals published over a five-year period (1987–
1991) and a more recent set of TREC Genomics Track data [201] that
contains ten years of MEDLINE citations (1994–2003). Stand-off anno-
tations supporting information retrieval relevance, document classifica-
tion, and question answering are available for portions of these collec-
tions. Whereas TREC collections provide access to MEDLINE spans
over a given time period, other collections are task-oriented. For exam-
ple, the GENIA corpus [90] contains 1,999 MEDLINE abstracts retrieved
using the MeSH terms “human,” “blood cells,” and “transcription fac-
tors.” The GENIA corpus is currently the most thoroughly annotated
collection of MEDLINE abstracts. It is annotated for part-of-speech,
syntax, coreference, biomedical concepts and events, cellular localiza-
tion, disease-gene associations, and pathways. In addition, the GENIA
corpus is one of the three constituents of the BioScope corpus [217],
which provides GENIA MEDLINE abstracts, five full-text articles, and
a collection of radiology reports annotated with negation and modality
cues as well as scope. Other topically-annotated collections of MED-
LINE abstracts include the earlier BioCreAtIve collections [69, 97] and
the PennBioIE corpus [105, 106]. The PennBioIE corpus contains 1100
abstracts for cytochrome P-450 enzymes and 1157 oncology abstracts
with annotations for paragraphs, sentences, tokens, parts-of-speech, syn-
tax, and biomedical entities. Finally, the Collaborative Annotation of a
Large Biomedical Corpus (CALBC) initiative [26] has proposed the cre-
ation of a “silver standard” corpus that contains MEDLINE abstracts
that have been automatically annotated with biomedical entities by the
initiative participants. This corpus has just recently become publicly
available.

Being informative and undoubtedly useful for text mining, MEDLINE
abstracts do not contain all the information presented in full-text arti-
cles. Some information (e.g., the exact settings of an experiment or the
discussion of the results) is almost exclusively contained in the body of
an article. The promise of a qualitative increase in the amount of useful
information brought about several full-text collections. For example, the
TREC Genomics Track dataset contains about 160,000 full-text articles
from about 49 genomics-related journals, which were obtained in HTML
format from the Highwire Press [66] electronic distribution of the jour-
nals. Another collection of full-text articles annotated with relevance
to patients’ case descriptions was developed in the ImageCLEF evalua-
tions [127, 84]. The Colorado Richly Annotated Full Text Corpus [38]
adds to the growing body of semantically and syntactically annotated
full text collections (including the full-text portion of the BioScope col-
lection mentioned above). Finally, the largest publicly available source
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of original, full-text articles is the Open Access subset of PubMed Cen-
tral [154].

With the growing interest in clinical text mining and biosurveillance,
several public collections of clinical text have recently become available.
These collections include reports in the Multiparameter Intelligent Mon-
itoring in Intensive Care (MIMIC II) database [171], the Pittsburgh col-
lection of clinical reports [211], and the annotated i2b2 collections [214,
213, 215, 216]. Several recent studies used the Web (i.e, Twitter and
health-related blogs and community sites) as a corpus, but it is not
clear if the collections created for these studies are publicly available or
not.

2.2 Annotation

The annotation of biomedical text adds information to a document col-
lection that can later be exploited for text mining purposes. In general,
document annotation in the biomedical domain follows the principles
set forth in open-domain natural language processing (NLP) by adding
annotations at multiple levels of linguistic analysis. The various aspects
involve grammatical (including morphological and syntactical), seman-
tic, and pragmatic annotations [103]. Grammar and meaning are so
intertwined that most annotation efforts combine the two. For example,
corpus creators might decide to annotate named entities of interest only
in noun phrases. As an alternative, Wilbur et al. [222] focus on annotat-
ing the “information-bearing fragments within scientific text” without
specifying any grammar restrictions. The authors define the following
five annotation axes: Focus, Polarity, Certainty, Evidence, and Direc-
tion. These classes are primarily used at the sentence level, and sen-
tences may be broken as needed if a change in one of the annotations
aspects is detected. However, even meaning-centric annotations cannot
be completely grammar-free. For example, one of the clues for annotat-
ing fragments as Evidence is a past tense verb indicating an observation
or finding. The guidelines published by the authors [178] are a good
starting point for developing other text-mining annotation guidelines in
the biomedical domain.

There are three approaches to the annotation of biomedical text.
These methods include (1) a complete manual annotation that is based
on annotators’ knowledge; (2) an assisted annotation, in which the out-
put of an annotation tool is manually corrected; and (3) an ontology-
based annotation—either manual or assisted—in which only terms and
relations present in an existing knowledge source are annotated. Each
of these approaches has its strengths and weaknesses. For example, an
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assisted annotation is usually more consistent, but it may be biased.
Similarly, an ontology-based annotation will likely be biased towards
known facts. Having more than one annotator for each text document
and having various annotator groups can compensate for such biases [15].

In addition to generic information extraction tools that can be used
to assist in annotation (described below), several text mining tools have
been developed to specifically support the annotation process. Exam-
ples of widely-used tools for annotating biomedical text include Knowta-
tor [140] and eHOST (Extensible Human Oracle Suite of Tools) [48], the
later of which is increasingly used for the annotation of clinical text. In
order for such tools to be useful, they must be easy to use, support var-
ious annotation types, and allow collaborative annotation, among other
factors [115, 47].

2.3 Knowledge Sources

The biomedical domain offers a rich set of knowledge sources support-
ing text mining applications. The Unified Medical Language System R©

(UMLS R©) [111], a compendium of controlled vocabularies that is main-
tained by NLM, is the most comprehensive resource, unifying over 100
dictionaries, terminologies, and ontologies in its Metathesaurus. It also
provides a semantic network that represents relations between Metathe-
saurus entries, a lexicon that contains lexicographic information about
biomedical terms and common English words, and a set of lexical tools.
Overall, NLM provides over 200 knowledge sources and tools that can
be used for text mining [210]. Other sets of ontologies are maintained
by collaborative effort in the OBO Foundry [143] and the National Cen-
ter for Biomedical Ontology (NCBO) [129]. The NCBO ontologies are
accessed and shared through BioPortal [130]. Other major centers that
maintain specialized resources for biomedical text mining include the
British National Centre for Text Mining [132] and the European Bioin-
formatics Institute [52].

In addition to these broad-coverage resources, the biomedical domain
offers in-depth knowledge sources focused on specific subdomains of
biomedicine. For example, the Pharmacogenomics Knowledge Base [152]
is a collection of scientific publications annotated with primary genotype
and phenotype data, gene variants, and gene-drug-disease relationships.
The annotations are downloadable for individual research purposes. An-
other specialized source, the Neuroscience Information Framework [134],
includes an ontology covering brain anatomy, cells, organisms, diseases,
techniques, and other areas of neuroscience.
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The best knowledge source for a given text mining task is determined
by the nature of the problem at hand. For example, mining the scientific
literature for relations between genes, diseases, and drugs first requires
recognizing instances of these entities. To aid in this task, a researcher
might rely on knowledge of the terms’ corresponding semantic types in
the UMLS or instead may chose to use individual knowledge sources,
such as the Gene Ontology [16], SNOMED Clinical Terms R© [188], or
the FDA Approved Drug Products with Therapeutic Equivalence Eval-
uations (Orange Book) [209]. Approaches to the various text mining
tasks in the biomedical domain make extensive use of the resources de-
scribed in this section and sometimes derive meta-resources for a specific
task. For example, Rinaldi et al. [163] define several entity types needed
for mining the literature for protein interactions (protein/gene names,
chemical compounds, cell lines, etc.) and then automatically aggregate
terms extracted from curated resources such as the UMLS, Affymetrix
identifiers for micro array probes, organism databases, and others into
a list of 2,347,734 terms.

2.4 Supporting Tools

The variety and purpose of the tools supporting biomedical text mining
echoes that of the knowledge sources described above. The following
discussion of text mining tools omits applications described in recent
surveys and instead focuses on the basic, widely used tools for identifying
named entities and relations and the platforms that allow building text
mining pipelines.

The most widely used tool for named entity recognition that is based
upon the UMLS is MetaMap [14]. MetaMap is a highly configurable
application that identifies UMLS Metathesaurus concepts in free text.
Because MetaMap provides a wide range of configuration options and
relies on the entire UMLS Metathesaurus, it is not easy to determine the
best configuration for a given task. However, exploring the options using
the interactive MetaMap website may aid with such choices. MetaMap,
which was provided as service until recently, is now open source and
available for download. Two statistical tools widely used for biological
named entity recognition are ABNER [176] and BANNER [101]. Both
ABNER and BANNER are based on conditional random fields and rely
on a wide array of features. Unlike ABNER, BANNER avoids seman-
tic features, but it uses syntactic features. Both systems exploit such
domain-specific language characteristics as capitalization, word shapes,
prefixes, suffixes, and Greek letters.
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Tools for relation extraction are not yet as readily accessible as entity
recognition tools. Kabiljo et al. [83] compared available tools for iden-
tifying biomedical relations (AkanePPI, Whatizit, and OpenDMAP) to
a simple, regular expression-based approach and found that the simple
approach performed surprisingly well. The authors conclude that high
recall (around 90%) is achievable for extracting gene-protein relations
when the available tools are combined.

A recent trend in tool development and use is the assemblage of
pipelines based on open-source frameworks, such as the Generalized
Architecture for Text Engineering (GATE) [39] and the Unstructured
Information Management Architecture (UIMA) [54]. The most mature
system for clinical text processing (ranging from identifying patients’
problems to events) is MedLEE [58]. Descriptions of other systems and
clinical text mining tasks can be found in a recent review [41].

This section has presented only a snapshot of open-domain biomed-
ical text mining resources. By its nature, the information contained
herein will become dated sooner than the other material presented in
this chapter. To compensate for the rapid progress of research related
to biomedical text mining, many researchers maintain websites with links
to useful resources (e.g., BioNLP [19]). Realizing that this task is too
time consuming for individual researchers, the U. S. Department of Vet-
erans Affairs and NLM provide a registry of biomedical text mining tools,
known as ORBIT, which is maintained by the research community [144].

3. Information Extraction

A goal of many biomedical text mining tasks is the identification of
explicitly stated facts. Information extraction refers to the process by
which structured facts are automatically derived from unstructured or
semi-structured text. In the biomedical domain, unstructured text com-
monly includes scientific articles appearing in the biomedical literature
as well as clinical narratives found in electronic health records or other
clinical information systems. Although the information extracted from
these sources can be the target of information retrieval systems, infor-
mation extraction is often performed as an initial processing step for
other biomedical text ming applications (Sections 4–6).

Biomedical information extraction technology has undergone rapid
development in recent years, spurred in part by community-wide evalu-
ations that have been focussed specifically on text mining within the
biomedical domain. Some examples of recent evaluation forums in-
clude BioCreAtivE [69, 97], BioNLP [89, 88], i2b2 [214, 213, 215, 216],
JNLPBA [91], and LLL [133] shared tasks. The strong interest in
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community-wide evaluation efforts such as these is reflective of the grow-
ing volume of unstructured biomedical text available electronically in
databases such as MEDLINE or in clinical information systems.

Three major subtasks of information extraction are particularly rele-
vant for processing biomedical text. First, named entity recognition is
a task that seeks to identify and classify biomedical entities into prede-
fined categories such as the names of proteins, genes, or diseases. Often,
extracted entities are normalized to canonical, unambiguous represen-
tations with the aid of ontological resources and further classified into
semantic categories. The second subtask of information extraction rele-
vant to the biomedical domain is relation extraction, which aims to de-
tect binary relationships among named entities. Examples include gene-
disease relationships, protein-protein interactions, and medical problem-
treatment relationships. Finally, the third major subtask, event extrac-
tion, seeks to identify highly complex relations among extracted entities.
Events relevant to the biomedical domain include, for example, gene ex-
pression and regulation and protein binding.

Although each of these subtasks are distinct in the type of informa-
tion they aim to extract, they achieve their goals by employing similar
methods, which include machine learning, statistical analysis and other
techniques of natural language processing. Challenges and approaches to
the subtasks of biomedical information extraction are discussed below.

3.1 Named Entity Recognition

Biomedical Named Entity Recognition (NER) refers to the task of au-
tomatically identifying occurrences of biological or medical terms in un-
structured text. Common entities of interest include gene and protein
names, medical problems and treatments, drug names and their dosages,
and other semantically well-defined data classifiable within the biomedi-
cal domain [104]. Although commonly discussed as a single task, NER is
typically a three-step process that involves determining an entity’s sub-
string boundaries within the text, assigning the entity to a predefined
class or category, and selecting the preferred name or unique identifier
of the concept that the entity names. This last subtask, entity normal-
ization, is sometimes addressed as a separate problem from NER, but
it is briefly discussed here in the context of describing the many issues
that make NER a challenging task in the biomedical domain.

NER is particularly challenging for biomedical text due to a variety
of reasons. The most basic obstacle results from the dynamic nature
of scientific discovery. In the biomedical domain, there exists a vast
amount of semantically relevant entities that is constantly and rapidly
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increasing as new scientific discoveries are made [226]. This ever-growing
list of relevant terms is problematic for NER systems that rely only on a
dictionary of known terms or other curated resources to identify named
entities since these resources can never be complete as long as scientific
progress continues.

Another challenge to biomedical NER is synonymy. In biomedical lit-
erature, the same concept may be expressed using different words. For
example, “heart attack” and “myocardial infarction” refer to the same
medical problem so an NER system should recognize these terms as in-
stances of the same concept, despite being expressed differently. When
many synonyms for a particular concept are in use, it becomes difficult
to integrate knowledge from multiple sources without a comprehensive
synonymy resource such as the UMLS Metathesaurus or Gene Ontol-
ogy. However, given the rapidly increasing number of biomedical enti-
ties, these resources are unlikely to be complete at any given moment,
resulting in some synonymy relationships that may not be captured.

Finally, the abundant use of acronyms and abbreviations in biomedi-
cal literature make it difficult to automatically identify the concepts to
which these terms refer. Often, successful acronym and abbreviation
resolution depends greatly on the context in which the terms appear
since the same term can refer to different concepts. For example, the
abbreviation RA can refer to “right atrium,” “rheumatoid arthritis,” “re-
fractory anemia,” “renal artery,” or one of several other concepts [148].
To address the challenges associated with acronyms, abbreviations, and
synonymy, NER systems typically perform some form of entity normal-
ization.

Entity normalization is a subtask of NER and refers to the process
of mapping entity occurrences to their canonical, preferred names. Al-
though a challenging task itself, entity normalization can help resolve
issues resulting from synonymous terms and ambiguous acronyms and
abbreviations by associating these entities with unique, unambiguous
representations. Often, since there may not be community-wide agree-
ment on the preferred name for a given entity, the goal of entity normal-
ization is to map an entity instance to the unique identifier of a concept
in a terminology resource. In general, entity normalization requires the
existence of such terminology resources, though they may be incomplete.
Since normalization is such a crucial component of many NER systems,
it is often an implied processing step after identifying entity boundaries
and assigning them to a category. However, the entity normalization
subtask may be evaluated independently of these subtasks, as was the
case in recent BioCreAtivE shared task evaluations [67, 126].
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For NER systems that analyze large amounts of biomedical text, it is
important to consider the quality that can be expected of the methods
being utilized. Typically, the performance of NER systems is measured
in terms of precision, recall, and F -score. However, a variety of issues
make these measurements difficult to reliably obtain and compare.

One issue is the availability of large, high-quality annotated corpora
to serve as the ground truth on which to base NER system evaluations.
The ground truth corpora must be large enough to allow the extrapola-
tion of experimental results to large text collections, such as the entirety
of MEDLINE, and the annotations should exhibit high inter-annotator
agreement and reflect expert-level judgement. However, while the size
of a ground truth data set is crucial, annotation errors do not neces-
sarily pose an insurmountable problem to system evaluation, especially
if the data set is sufficiently large. For example, Uzuner et al. [216]
demonstrated that errors in the ground truth for a recent i2b2 shared
task evaluation could affect the relative performance of competing NER
systems by 0.05% at most.

Another issue to consider when evaluating NER systems is how to
define the boundaries of a correctly identified entity. A strict evalua-
tion requires both the left and right boundaries of an extracted entity
to exactly match those of the ground truth annotations while a loose
evaluation requires only that the extracted entity boundaries overlap
those of the annotations [104]. Olsson et al. [142] showed that the choice
of a strict or loose evaluation affects the relative performance of NER
systems and suggested several scoring criteria for different application
needs.

Recent community-wide evaluations have demonstrated that NER
systems are typically capable of achieving favorable results. For ex-
ample, the best performing systems achieved F -scores of 0.83 and 0.87
for the first [226] and second [187] BioCreAtIve gene mention recogni-
tion tasks, 0.85 for the i2b2 concept extraction task [216], and 0.73 for
the JNLPBA bio-entity recognition task [91]. Although NER systems
may be tailored for a particular information extraction task, their pri-
mary methods can broadly be grouped as following one of several basic
approaches, which are discussed below.

Dictionary-based methods, one of the most basic biomedical NER
approaches, utilize comprehensive lists of biomedical terms in order to
identify entity occurrences in text. Such systems determine whether a
word or group of words selected from the text exactly matches a term
from some biomedical resource. When used as stand-alone methods,
dictionary-based approaches generally exhibit reasonably high precision,
but they suffer from poor recall due to the existence of spelling mistakes
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and morphological variants [207]. However, low precision is also possible
due to homonymy [68]. For example, many gene names and abbrevi-
ations (e.g, “an,” “by,” and “can”) share lexical representations with
common English words [99]. For these reasons, some form of inexact
string matching is commonly utilized to improve the precision and recall
of dictionary-based approaches. Some methods improve performance by
first generating spelling variants for the terms in a biomedical resource,
and then by appending these additional terms to the underlying word
lists [205, 204]. The methods are then able perform exact matching
using the augmented resource. Other methods utilize algorithms such
as BLAST R© [10, 11] to perform approximate string matching instead
of exact matching [100]. Despite these improvements, dictionary-based
methods are most often used in conjunction with more advanced NER
approaches.

Another approach to NER is to define rules that describe the compo-
sition patterns of named biomedical entities and their context. Exam-
ples of rule-based approaches include the EMPathIE and PASTA sys-
tems [78, 61], which use context free grammars that recognize enzyme
interactions and protein structures. Other systems utilize pattern-based
rules that exploit the orthographic and lexical characteristics of targeted
entity classes in order to recognize protein [59] and chemical [128] names.
These simpler methods may be improved by additionally considering
contextual information [70] and the results of syntactic parsing for de-
termining entity boundaries [57]. However, while rule-based approaches
typically achieve better performance than dictionary-based approaches,
manual generation of the required rules is a time-consuming process,
and, since the rules are usually very specific in order to achieve high
precision, they are difficult to extend to other entity classes.

It is increasingly common for NER approaches to rely on statisti-
cal methods instead of, or in combination with, dictionary- and rule-
based approaches. Unlike the previously described approaches, statisti-
cal methods typically rely on some form of machine learning algorithm
to identify biomedical entities. While supervised machine learning ap-
proaches must be trained with observations taken from large annotated
corpora, recent work has investigated the automatic generation of train-
ing data for the NER task through the use of bootstrapping and other
semi-supervised statistical techniques [218, 125, 212]. Common statis-
tical methods used for NER can be grouped as either classification- or
sequence-based approaches.

Classification-based approaches transform the NER task into a clas-
sification problem, which can either be applied to individual words or
groups of words. Common classifiers used for biomedical NER include
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Näıve Bayes [139] and Support Vector Machine (SVM) [86, 118, 196,
224] classifiers. Although it is possible to classify multi-word phrases,
a popular approach follows the BIO tagging scheme [157], where indi-
vidual tokens are classified as being at the beginning (B) of an entity,
inside (I) the boundaries of an entity, or outside (O) the boundaries of
an entity. However, despite its success, this tagging scheme can be prob-
lematic if entity boundaries overlap, and several authors have addressed
the problem of recognizing nested biomedical entities [62, 8]. The per-
formance of classification-based approaches is highly dependent on the
choice of features used for training, and many authors have explored
various feature combinations. For example, Kazama et al. [86] and Mit-
sumori et al. [118], consider morpho-syntactic properties of named en-
tities, Takeuchi and Collier [196] consider orthographic and head-noun
features, and Yamamoto et al. [224] explore a variety of features en-
compassing boundary, morpho-lexical, and syntactic properties as well
as a dictionary-based feature that indicates whether a word appears
in a biomedical resource. Given the sensitivity of classification-based
approaches to the choice of features, automatic feature selection is an
important consideration. Hakenberg et al. [63] perform a systematic
evaluation of common features and discuss their influence on the predic-
tive quality of classification-based NER systems.

Unlike classification-based approaches, sequence-based NER systems
consider complete sequences of words instead of only individual words
or phrases. They are trained on tagged corpora and aim to predict
the mostly likely tags for a given sequence of observations. A common
statistical framework used for biomedical NER is the Hidden Markov
Model (HMM) [36, 179, 124, 93]. Methods based on the Maximum En-
tropy Markov Model are also common [55, 37]. However, Conditional
Random Fields (CRF) [141, 175] are often demonstrated to be superior
statistical frameworks for biomedical NER. For example, CRFs were
utilized by the best performing system on the i2b2 medical concept ex-
traction task [216] and by highly ranked systems on the BioCreAtIve
gene mention recognition tasks [226, 187] and the JNLPBA bio-entity
recognition task [91]. Like other statistical methods, sequence-based ap-
proaches can be trained on a variety of features including orthographic
features [36, 124], prefix and suffix information [179], and part-of-speech
tag sets augmented to include tags for entity classes [93].

Many approaches do not just utilize a single method for perform-
ing biomedical NER and instead rely on multiple techniques and var-
ious resources. These hybrid approaches are often quite successful at
combining dictionary- or rule-based approaches with statistical meth-
ods. As evidence of the advantages of hybrid approaches, Abacha et
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al. [2] compared the performance of common rule-based and statisti-
cal approaches to medical entity recognition and concluded that hybrid
approaches utilizing machine learning and domain knowledge perform
best. There are numerous hybrid biomedical NER systems. For exam-
ple, Sasaki et al. [173] use a dictionary-based approach to identify known
protein names in parallel with part-of-speech tagging. They then use a
CRF-based approach to reduce the number of false positives and false
negatives in the resulting tagged sequence. Other methods create meta-
learners from multiple statistical methods. For example, Zhou et al. [236]
utilize a meta-learner composed of two HMMs trained on different cor-
pora whose outputs are combined with one SVM to recognize protein
and gene names. Similarly, Mika and Rost [117] compose a meta-learner
to recognize protein names from three SVMs trained on different copora
and feature sets whose outputs are then combined with a fourth SVM.
Finally, Cai and Cheng [25] present an approach to biomedical NER that
utilizes three different classifiers to improve the generalization ability of
the system.

A more thorough analysis of NER approaches in the biomedical do-
main can be found in the several literature surveys dedicated to the
subject [99, 104].

3.2 Relation Extraction

Most information extraction tasks in the biomedical domain go beyond
simply identifying named entities and, in addition, involve determining
relationships among those entities. In their simplest form, associations
among biomedical entities are binary, involving only the pair-wise rela-
tions between two entities. However, biomedical relationships can in-
volve more than just two entities, and these complex associations are
discussed later with the event extraction task. The goal of the relation
extraction task, therefore, is to identify occurrences of particular types
of relationships between pairs of given entities. Although common en-
tity classes (e.g., genes or drugs) are generally quite specific, the types of
identified relationships may be broad, including any type of biomedical
association, or they may be specific, for example, by characterizing only
gene regulatory associations.

A variety of biomedical relations have been the subject of information
extraction tasks in the literature. In the current genomic era, much of
this work has focussed on automatically extracting interactions between
genes and proteins. In particular, because of its critical role in un-
derstanding biological processes, Protein-Protein Interaction (PPI) has
been one of the most widely researched topics in biomedical information
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extraction. Other associations of interest include interactions between
proteins and point mutations [102], proteins and their binding sites [28],
genes and diseases [31], and genes and phenotypic context [113]. In
the clinical domain, relationships between patients’ presented medical
problems and the tests or treatments they may undergo [216] is an in-
creasingly important type of relation, especially considering the growing
prominence of electronic health record systems.

Biomedical relation extraction faces many of the same challenges as
NER, including the creation of high quality annotated corpora for train-
ing and evaluating relation extraction systems. Compared with the an-
notation of named entities, the annotation of relations is considerably
more complicated since relations are generally expressed as discontin-
uous spans of text and the types of relations considered are usually
application-specific [13]. Additionally, since there is often little consen-
sus regarding how to best annotate given types of relations, the resulting
resources are largely incompatible, and, as a result, the quality of the
methods utilizing these resources is difficult to evaluate. For example,
Pyysalo et al. [155] performed a comparative analysis of five PPI corpora
and found that the performance of state-of-the-art PPI extraction sys-
tems, measured in terms of F -score, varied on average by 19 percentage
points and by as much as 30 percentage points on the evaluated cor-
pora. Participation in community-wide evaluations that are dedicated
to the relation extraction task is indispensable for obtaining annotated
corpora.

Relation extraction tasks have been a component of several recent
evaluation forums, and these tasks include the LLL genic interaction
challenge [133], the BioCreAtIve PPI extraction task [96], and the i2b2
relation extraction task [216]. The purpose of the LLL challenge was
to extract protein and gene relationships from abstracts contained in
MEDLINE, and the best-performing system achieved an F -score of 0.54
identifying these associations. The BioCreAtIve task consisted of four
subtasks related to PPI extraction. These challenges included the clas-
sification of PubMed abstracts as to whether they were relevant for
PPI annotation, the identification of binary protein-protein interactions
from full-text articles, the extraction of protein interaction methods,
and the retrieval of textual evidence describing the interactions. The
best-performing system achieved a precision of 0.37 at recall 0.33 for
extracting binary PPI relations. Finally, the aim of the i2b2 relation ex-
traction challenge was to identify medical problem-treatment, problem-
test, and problem-problem relationships in clinical notes. Participants
were tasked, for example, with determining whether two co-occurring
problem and treatment concepts were related, and if so, whether the
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patient’s treatment improved, worsened, or caused the medical problem.
The best-performing system on the i2b2 relation extraction challenged
achieved an F -score of 0.74. Like the forums dedicated to evaluating
the NER task, community-wide evaluations such as these have been
instrumental in the development and evolution of relation extraction
approaches.

Relation extraction approaches have shown an evolution from simple
systems that rely solely on co-occurrence statistics to complex systems
utilizing syntactic analysis and dependency parsing. Some recent ap-
proaches to the relation extraction task are described below. An ac-
counting of additional methods can be found in other biomedical text
mining surveys that cover the relation extraction task [13, 32, 238].

The simplest method of identifying relations between biomedical enti-
ties is to collect instances where the entities co-occur. If the entities are
repeatedly mentioned together, then there is a greater chance that they
may be related in some way, although the type and direction of this re-
lation typically cannot be determined by co-occurrence statistics alone.
For example, Chen et al. [30] apply co-occurrence statistics to compute
the degree of association between diseases and drugs extracted from
clinical records and biomedical literature. Co-occurrence approaches
commonly exhibit high recall and low precision.

Rule-based approaches describe the linguistic patterns exhibited by
particular relations. Unlike the systems based on term co-occurrences,
rule-based approaches typically demonstrate high precision and low re-
call. The rules used for relation extraction can be manually defined by
domain experts [172], or they can be derived from annotated copora by
machine learning algorithms [64].

Classification-based approaches are also commonly used to identify re-
lations, particularly those involving medical entities. Roberts et al. [168]
describe a supervised machine learning system, trained on shallow fea-
tures extracted from oncology reports, that detects various clinical re-
lationships in patient narratives. Similarly, Rink et al. [167] describe a
system that discovers relations between medical problems, treatments,
and tests mentioned in electronic medical records. The system relies on
supervised machine learning and lexical, syntactic, and semantic con-
text features. Bundschus et al. [23] utilize CRFs to identify and classify
relations between diseases and treatments extracted from PubMed ab-
stracts and relations between genes and diseases in the human GeneRIF
database. Finally, Abach and Zweigenbaum [1] describe a hybrid ap-
proach that utilizes patterns developed by domain experts as well as
SVM classification to extract relations that occur between diseases and
treatments in medical texts.
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An important advance in the evolution of relation extraction methods
has been the consideration of syntactic structures. In particular, depen-
dency parsing is capable of producing informative syntactic descriptions
of biomedical text, in the form of dependency trees or graphs, which en-
code grammatical relations between phrases or words. Fundel et al. [60]
produce dependency trees from MEDLINE abstracts. Their system then
applies three relation extraction rules to the syntactic structures in order
to identify gene and protein associations. Similarly, Rinaldi et al. [164]
combine syntactic patterns obtained from dependency tree structures
in order to support querying the biomedical literature for interactions
between genes and proteins. Miyao et al. [121] perform deep parsing to
annotate predicate-argument structures in MEDLINE abstracts. Their
system then relies on the structural matching of the semantic annota-
tions to identify and retrieve relational concepts. In other work, Miyao
et. al [122] evaluate various parsers and their output representations on
their ability to improve accuracy when used as a component of a PPI
extraction system.

With the growing availability of large corpora containing relational
annotations, many approaches utilize machine learning algorithms to
extract useful information from syntactic structures rather than apply-
ing manually derived patterns. In the context of kernel-based machine
learning, several authors have proposed kernels capable of measuring
the similarity between syntactic parse trees or graphs. Airola et al. [7]
describe an all-paths graph kernel for computing the similarity between
dependency graphs. The kernel function is then used in training a least
squares support vector machine to identify protein-protein interactions.
Kim et al. [92] suggest four genic relation extraction kernels defined
on the shortest syntactic dependency path between two named entities.
Finally, Miwa et al. [120] describe a framework for combining the out-
puts of multiple kernels and syntactic parsers to extract protein-protein
interactions.

Syntactic analysis is often complemented by semantic role labeling,
a natural language processing technique that identifies the semantic
roles of words or phrases in sentences and expresses them as predicate-
argument structures. Tsai et al. [202] construct a role labeling sys-
tem that uses a maximum entropy machine learning model to extract
biomedical relations from a prepared portion of the GENIA corpus. As
discussed below, the annotation of semantic roles for named biomed-
ical entities has enabled the extraction of a variety of complex entity
associations.
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3.3 Event Extraction

Recently, there has been a shift in biomedical information extraction
from recognizing binary relations to the more ambitious task of identify-
ing complex, nested event structures. Events are typically characterized
by verbs or nominalized verbs. For example, in the sentence “glnAP2
may be activated by NifA,” the verb activated specifies the event, and
glnAP2 and NifA are the event’s arguments. Unlike the case of simple
binary relations, both concept labels and semantic roles are assigned to
an event and its arguments. In this example, the verb activated indi-
cates a positive regulation type event, which expects a protein (NifA)
to act as the event’s cause and a gene (glnAP2 ) to act as the event’s
theme [13].

Another important distinction between the extraction of binary rela-
tions and complex events is that events can be nested, with one event
functioning as a participant of another event. For example, in the sen-
tence “RFLAT-1 activates RANTES gene expression” two events are
present [13]. One event is indicated by the nominalized verb expression
whose theme is RANTES, a gene, and the other event is indicated by
the verb activates whose cause is RFLAT-1, a protein, and whose theme
is the gene expression event itself. Thus, event representations, unlike
binary relations, are capable of capturing many different types of asso-
ciations with an arbitrary number of entities and events related by a
variety of semantic roles.

Due to the complexity of biomedical events, effective event extraction
typically requires a thorough analysis of sentence structure. Event ex-
traction is particularly aided by the use of semantic processing and deep
parsing techniques, which are capable of analyzing both the syntactic
and semantic structure of biomedical text. Dependency parsing is an
especially useful technique for capturing semantics such as predicate-
argument relationships, which have been shown to be an effective repre-
sentation for event extraction [219]. Despite the complexity of the task,
event extraction has broad applicability in the biomedical domain, and
it is increasingly being used for the annotation of biomedical pathways,
Gene Ontology annotation, and the enrichment of biological databases.

The growing interest in event extraction has largely been driven by
the introduction, mostly in the domain of systems biology, of corpora
containing the annotations necessary for the training and evaluation of
statistical event extraction methods. The BioInfer corpus [156] was the
first publicly available corpus in the biomedical domain to incorporate
event annotations. Other annotated event corpora include the GENIA
Event Corpus [92] and the Gene Regulation Event Corpus [198]. No-
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tably, the GENIA corpus remains one of the most widely used resources
in biomedical text mining, and the data for the BioNLP shared tasks on
event extraction [89, 88] were prepared based on this resource.

The BioNLP ’09 shared task [89] was the first-of-its-kind community-
wide evaluation of event extraction methods. The primary challenge
was to extract event types related to protein biology from MEDLINE
abstracts. Targeted event types included, among others, gene expres-
sion, transcription, localization, binging, and regulation. The binding
event type was more complex than the others since it required the de-
tection of an arbitrary number of arguments, and the regulation event
types were notable for allowing other events to act as their cause or
theme. The best-performing system obtained an F -score of 0.52 on
the primary event extraction task. The BioNLP ’11 shared task [88]
repeated the evaluation from the previous meeting, but also included
additional tasks targeting event types in other subdomains of biology.
On the subtask comparable with that of that of the first meeting, the
best-performing system achieved an F -score of 0.57, which demonstrated
a significant improvement in the community. Successful systems at the
BioNLP shared task meetings relied on a variety of techniques includ-
ing machine learning, Markov logic networks, and dependency parsing.
Several approaches to biomedical event extraction are described below.

Most event extraction systems follow a pipelined approach that di-
vides the task into a sequence of three stages. Fist, the systems predict
a candidate set of event trigger words. Trigger words are often the
verbs or nominalized verbs that indicate a particular event type, such as
“phosphorylation,” “activates,” or “inhibits.” Then, the systems seek to
determine whether any recognized named entities or trigger words are
instantiations of event arguments. The final stage in the process is a
semantic post-processing step that attaches arguments to event triggers
following constraints on the type and number arguments allowable for a
given event type.

This basic architecture is a common approach to the event extrac-
tion task. Björne et al. [21] describe the best-performing system on
the BioNLP ’09 event extraction task. Their method trains separate
multi-class SVMs for detecting event triggers and arguments using an
extensive set of features, especially those derived from dependency parse
graphs. Their system then uses a rule-based approach for attaching argu-
ments to their corresponding events. This approach has been combined
with BANNER to perform event extraction on an unlabeled subset of
citations from PubMed [20]. Miwa et al. [119] describe an event ex-
traction approach similar to that of Björne et al., but instead of relying
on a rule-based approach to attach event participants to trigger words,
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they obtain an improvement by utilizing a classifier and additional fea-
tures for this step. Buyko et al. [24] describe a system that relies on
a dictionary-based approach to identify event triggers and an ensemble
of feature- and kernel-based classifiers trained using “trimmed” depen-
dency graphs to identify event participants. Kilicoglu and Bergler [87]
also use a dictionary-based approach to identify event riggers, but they
develop rules based on syntactic dependency paths to detect event par-
ticipants. Finally, Cohen et al. [34] describe a pattern-based approach
to event extraction that utilizes the OpenDMAP system [79] to define
entity and event types as well as the constraints on event arguments.

Recently, joint prediction approaches have been proposed that seek
to overcome the problem of cascading errors, which some of the above
approaches allow. For example, by separating the event trigger and ar-
gument detection tasks, a system may not correctly extract an event if
it fails to detect a trigger word in the first stage of the process. Poon
and Vanderwende [153] propose a method based on Markov logic net-
works that jointly predicts events and arguments. For each word, the
system predicts whether it is an event trigger word, and for each syn-
tactic dependency edge, the system predicts whether it is an argument
path leading to an event theme or cause. Additionally, Riedel and Mc-
Callum [161] propose a family of three joint prediction models based
on Markov logic that are less computationally complex than previous
work [160] and lead to better event extraction results.

4. Summarization

Information extraction techniques are often utilized as a first step in
other biomedical text mining tasks. One such task is the automatic sum-
marization of biomedical documents. Automatic summarization refers
to the process by which the salient aspects of one or more documents
is identified and presented succinctly and coherently. Due to the enor-
mous growth of unstructured information in the form of scientific articles
and electronic health records, a means for clinicians and researches to
quickly and reliably assimilate knowledge from a multitude of biomed-
ical sources is desirable. Automatic summarization is one approach to
determine and make accessible the important information contained in
an increasingly large and diverse volume of biomedical text.

In the biomedical domain, document summaries are commonly
application-oriented, and can serve a variety of purposes. Summaries
may be either a generic assimilation of facts or they may be targeted [3].
Generic summaries consider all the information contained in a document
or set of documents while targeted summaries aim to satisfy a specific
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information need, which is usually presented to a system in the form of
a query. For example, a targeted summary of the biomedical literature
might seek to determine the best treatments for a given disease [56],
whereas a generic summary might aim to extract from articles key sen-
tences related to results or conclusions [169]. Additionally, a summary is
considered indicative if its purpose is to inform a reader of the contents
of a document or set of documents, or it is informative if its purpose is
to supplant those contents in terms of information coverage [3].

Depending on their purpose, several different types of document sum-
maries can be produced. Single-document summaries seek to summarize
the contents of individual sources, whereas multi-document summaries
consider the information contained in a collection of sources [3]. Often,
document clustering is utilized when generating multi-document sum-
maries in order to produce a topical account of a particular group of
documents. Summaries may also be extractive or abstractive [3]. Ex-
tractive summaries are created by identifying the salient textual com-
ponents of documents (e.g., their important sentences or paragraphs)
and then presenting this information as the summary. The representa-
tive textual components are determined by statistical methods that rank
them according to relevance or by graph-based methods that organize
them according to their similarity. Alternatively, abstractive summaries
are created by structuring document information in a way that can be
processed by a natural language generation system to produce the sum-
mary. Salient information is typically generated through prior knowl-
edge of the documents’ structure or by utilizing ontological resources to
produce semantic representations of the documents.

Considering both the various types of summaries that may be gener-
ated and their intended applications, the evaluation of summarization
techniques within the biomedical domain is a challenging issue. This dif-
ficulty is due, in part, to the subjective aspect of determining whether a
summary is of “good” quality or not. Existing evaluation criteria con-
sider the intrinsic aspects of a summary, such as its coherence, concise-
ness, grammaticality, and readability. Other extrinsic evaluation criteria
measure, for example, whether a reader is able to comprehend the con-
tent of a summary [3]. However, manual evaluations of summaries are
time-consuming and expensive to perform. A popular automatic sum-
mary evaluation methodology is ROUGE [107]. ROUGE is an acronym
for Recall-Oriented Understudy for Gisting Evaluation, and it deter-
mines the quality of an automatically generated summary by computing
statistics based on n-gram co-occurrences and common subsequences be-
tween it and ideal human-produced summaries. ROUGE has been shown
to correlate well with human evaluations of single-document summaries.
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A related method is based on the Jensen-Shannon divergence of dis-
tributions between an automatically generated summary and reference
summaries and is more effective for the multiple document summariza-
tion task [108].

Recent biomedical text summarization techniques have been shown
to be effective tools for assimilating information from a diverse collec-
tion of sources. While most approaches in the biomedical domain aim
to produce targeted or topic-specific summaries, the types of generated
summaries are generally more diverse and include both single- and multi-
document summaries as well as extractive and abstractive summaries.
However, given the rapidly expanding volume of published biomedical
literature, multi-document summaries are increasingly viewed as impor-
tant. Examples of recent text summarization approaches and their ap-
plications are described below.

One of the most basic approaches to biomedical text summarization
involves the classification of individual sentences into a given set of cat-
egories. These categories may be specific to the biomedical domain, but
they are often representative of the general rhetorical categories com-
monly encountered in scientific literature. Agarwal and Yu [4] train a
Näıve Bayes classifier to classify sentences in full-text biomedical arti-
cles as being related to the introduction, methods, results, and discussion
rhetorical categories. Their system achieves an overall annotation agree-
ment of 0.76 kappa with human annotators. Ruch et al. [169] describe
a similar approach that classifies sentences in MEDLINE abstracts as
being related to an article’s purpose, methods, results, or conclusions.
Finally, Demner-Fushman and Lin [45] produce extractive summaries
for clinical information needs by extracting sentences from MEDLINE
abstracts relating to the outcomes of a clinical study.

While some of the above approaches apply generic summarization
methods to biomedical articles, most applications are targeted and seek
a concise description of a specific type of information. Since the under-
standing of gene regulation and expression is crucial in current biomedi-
cal research, a variety of targeted methods have been proposed to gener-
ate multi-document gene summaries. Ling et al. [112] propose a method
for generating abstractive multi-document gene summaries from biomed-
ical literature. Their two-stage approach to gene summarization first
retrieves articles that mention a particular gene, and it then identifies
text within those articles that pertains to several gene-related semantic
categories, which include expression, sequence, and phenotypic infor-
mation. Similarly, Yang et al. [225] describe an extractive approach to
gene summarization that first clusters genes into functional groups based
on their mentions in MEDLINE abstracts. Their system then presents
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summaries for each functional group by ranking and extracting sentences
from the abstracts.

A challenge facing many automatic summarization techniques is the
accurate semantic interpretation of the text. To address this issue,
several summarization methods utilize domain knowledge in order to
produce ontology-based document summaries. Reeve et al. [158] de-
scribes a single-document abstractive approach that utilizes MetaMap
to map text to concepts in the UMLS Metathesaurus. Their approach
then discovers strong thematic chains of UMLS semantic types and ex-
tracts the corresponding sentences. Yoo et al. [229] describe an ap-
proach to multi-document summarization that first clusters articles into
topical groups and then produces summaries for each cluster. Their
system uses a graph-based method for both document clustering and
summarization that is enriched with concepts from the MeSH ontol-
ogy. Morales et al. [123] describe a similar graph-based approach to
single-document summarization that represents documents using UMLS
concepts. Finally, Fiszman et al. [56] utilize SemRep [165] to produce
multi-document summaries of MEDLINE citations according to disease-
treatment relationships relevant to user-specified topics. Their approach
has become an integral component of Semantic MEDLINE [166].

In addition to the text found in biomedical articles, the figures they
contain also convey essential information. However biomedical images
are seldom self-evident, and much of the information required for their
comprehension is found elsewhere in an article. Figure captions, article
titles and abstracts, and snippets of text from within the bodies of arti-
cles all contribute to image understanding [230]. Given that figures are
a crucial source of information in the biomedical literature, many meth-
ods seek to incorporate image-related text into document summaries.
However, since the number of such approaches is so large, and their
methods are diverse, a full accounting of the use of image-related text
in bioinformatics warrants a separate review.

A few representative examples of figure summarization and the use
figure captions for producing document summaries include the follow-
ing. Similar to their approach for full-text summarization, Agarwal and
Yu [5] produce figure summaries consisting of one sentence each from an
article’s introduction, methods, results, and discussion rhetorical cate-
gories. Yu and Lee [232] produce figure summaries by extracting sen-
tences from article abstracts that are similar to figure captions, and
Simpson et al. [181] utilize image-related text to produce full-text sum-
maries in support of case-based article retrieval.

Several user-oriented systems have been developed for supporting
biomedical document summarization. PERSIVAL [116, 49] is a clini-
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cal system that seeks to provide access to medical literature and con-
sumer health information. For clinicians, the system produces targeted,
multi-document summaries containing sentences, extracted from full-
text biomedical articles, that relate to experimental results. For users
of the system that are patients, PERSIVAL provides indicative sum-
maries of information that is commonly repeated across a set of consumer
health documents. Anne O’Tate [184] is another user-oriented system
capable of producing summaries of biomedical literature. Anne O’Tate
is a web-based tool that provides navigable, extractive multi-document
summaries of article citations retrieved by PubMed. The tool presents
import words and authors mentioned in the results and can cluster the
retrieved citations by topic.

5. Question Answering

Another biomedical text mining task that builds upon information ex-
traction techniques is question answering. Unlike traditional information
retrieval, where a set of potentially relevant documents is returned for
a given query, question answering refers to the process of providing di-
rect and precise answers to natural language questions. Like automatic
summarization, question answering is a task directed towards aiding
researchers and health care professionals in managing the continuous
growth of information in the biomedical domain. Since question answer-
ing requires the use of complex natural language processing techniques
in order to produce accurate responses, question answering systems are
often regarded as the next generation of search engines.

The basic processing steps required of a question answering system
are well-understood. The input to such a system is natural language
text. A question processing stage uses linguistic analysis and question
classification techniques to determine the type of question being posed
to the system and the type of response it should generate. It then con-
structs a query from the input text to be fed into a document processing
stage. In the document processing stage, the system inputs the query
into a search engine, which retrieves a set of documents, and from these
documents, extracts relevant passages or snippets of text as potential
answers. An answer processing stage ranks the candidate answers ac-
cording to the degree to which they match the expected answer type
that was determined in the question processing stage. The output of a
question answering system is the top-ranked answer.

Several characteristics of this process distinguish question answering
in the biomedical domain from general, open-domain question answer-
ing systems. First, biomedical question answering is both challenged
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and advantaged by a prominent use of domain-specific terminology. Al-
though terminological variations and synonymy make text mining diffi-
cult in general for the biomedical domain (Section 3), question answer-
ing systems may benefit from the specificity and limited scope of po-
tential questions that a domain-specific terminology provides. Second,
the multitude of domain-specific corpora and the tools and methods re-
quired for exploiting the semantic information they contain (Section 2)
allow for deep question processing. Lastly, agreement on domain-specific
structures in which to organize questions—especially clinical questions—
allows for answer processing strategies that can be tailored to specific
question types.

Due to the unique characteristics of biomedicine as an application
domain for question answering, recently proposed systems have increas-
ingly sought to incorporate deep semantic knowledge throughout their
processing stages in order to produce more precise responses. The re-
mainder of the discussion in this section surveys biomedical question an-
swering techniques, and organizes the methods according to the recent
review by Athenikos and Han [17], in which the authors classify biomedi-
cal “semantic knowledge-based” systems into semantics-based, inference-
based, and logic-based approaches. Semantics-based approaches produce
answers to biomedical questions by exploiting the semantic metadata en-
coded in structured knowledge resources and ontologies; inference-based
approaches derive responses by exploiting extracted semantic relation-
ships, and logic-based approaches utilize explicit logical forms and theo-
rem proving techniques to produce answers. The approaches can further
be divided into those that support medical question answering and those
that support biological question answering.

5.1 Medical Question Answering

A dominant theme of work related to medical (or clinical) question an-
swering is the use of the evidence-based medicine framework. Evidence-
based medicine [170] seeks to apply the best information garnered from
scientific inquiry to clinical decision making. For determining the best
available evidence supporting an answer to a given clinical question, the
evidence-based paradigm suggests questions be structured according to
the PICO [159] format. PICO is an acronym for Patient/Problem, In-
tervention, Comparison, and Outcome. Clinical questions containing
elements that pertain to each of these semantic roles are considered well-
formed. In addition to the structure of clinical questions, taxonomies of
questions in the evidence-based framework have also been proposed. Ely
et al. [50] describe a generic taxonomy for clinical questions that distin-
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guishes among questions that are potentially answerable and those that
are not. The authors claim that questions involving a search for evidence
are among the answerable ones.

The first step towards answering a clinical question is processing the
question so as to determine the type of answer to produce. Several au-
thors in the medical domain have investigated question classification as
a means of analyzing and filtering clinical questions. Huang et al. [77]
describe a manual classification of primary care clinical questions as a
means to evaluate the effectives of the PICO framework. The authors
conclude that PICO is a useful organizing structure for clinical questions,
but they suggest it is less suitable for questions that do not involve ther-
apy elements. Additionally, Yu et al. [234, 235, 231] investigate various
machine learning approaches for question filtering that automatically
determine whether a clinical question is answerable according to the
evidence taxonomy proposed by Ely et al., which was described above.

Most approaches to medical question answering in some way make use
of domain-specific semantic knowledge for information extraction and re-
trieval. Jacqumart et al. [40, 81] describe a semantics-based approach
for the development of a French-language medical question answering
system. Their approach is notable for the use of pattern-based semantic
models of medical questions and the use of UMLS concepts, semantic
types and relations for identifying named entities and extracting answers.
Niu et al. [135, 136, 138, 137] propose a PICO-based question answering
approach within the EPoCare system. Their methods locate potential
answers by identifying, in both the question and answer texts, semantic
roles that correspond to the four elements of the PICO framework. The
semantic roles identified in the question are then compared with those
identified in candidate answers to select a response. Similarly, Demner-
Fushman et al [45, 44, 42, 109, 43] propose an approach to clinical ques-
tion answering based on the semantic unification of a query PICO frame
with those of candidate answers. Making extensive us of MetaMap and
SemRep, the authors describe semantic knowledge extractors for iden-
tifying PICO elements in medical texts, a semantic matcher for scoring
and ranking MEDLINE citations according to a query PICO frame, and
an answer generator for extracting answers from the scored citations.
Weiming et al. [221] describe a question answering approach that rep-
resents questions and documents using UMLS concepts, semantic types,
and semantic relations. Their approach is notable for incorporating a
semantic clustering phase into the answer processing stage so as to or-
ganize potential answers according to their hierarchical relationships in
the UMLS Metathesaurus. Finally AskHERMES [27] is an online clin-
ical question answering system capable of processing long and complex
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questions. The system uses machine learning techniques with a variety
of lexical, syntactic, and UMLS-derived features to classify questions and
topically group and rank candidate answers. A preliminary version of
AskHERMES, known as the MedQA [233] system, was a non-semantic-
knowledge-based approach capable of answering definitional questions.

Few approaches to question answering in the medical domain are
inference- or logic-based. Terol et al. [197] describe an approach based
on comparing the formal logic forms derived from a natural language
question with those of candidate answers. Their technique utilizes a
pattern-based method for question classification, and it identifies medi-
cal entities in both questions and answers based on UMLS concepts and
semantic types.

5.2 Biological Question Answering

Whereas evidence-based medicine provides a means to structure clinical
questions and answers, work in the biological domain has yet to adopt
such a prominent framework. However, systems targeting the biological
domain still follow the general architecture of questioned answering sys-
tems outlined previously. A review of recent work related to biological
question answering is presented below.

Like their use for medical question answering, semantics-based ap-
proaches are also commonly employed for answering questions in the
biological domain. Takahashi et al. [195] describe an approach that
utilizes the UMLS Metathesaurus and other biological dictionaries and
thesauri for analyzing questions and generating queries. Their system
then uses semantic information of terms selected from the retrieved docu-
ments to assimilate and rank candidate answers. Lin et al. [110] propose
a system for answering questions about biomolecular events, including
interactions between genes and proteins (Section 3). Their approach in-
volves the use of semantic role labeling for extracting predicate-argument
structures and the use of semantic features for ranking candidate an-
swers. The system provides answer responses in the form of biomedi-
cal named entities. Finally, the BioSquash [180] system is a targeted,
multi-document, semantic graph-based summarization system oriented
towards answering biological questions.

Like the use inference- and logic-based methods for medical question
answering, few approaches in the biological domain make use of these
techniques. Kontus et al. [94, 95] describe the AROMA inference-based
system for biological question answering. AROMA extracts rhetorical
and causal relationships from multiple biological texts, combines the ex-
tracted text with manually entered domain knowledge, and encodes this
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information as Prolog facts. The system generates answers to questions
by applying inference rules over the encoded facts. Rinaldi et al. [162]
describe a logic-based approach to question answering in the genomics
domain. Using deep linguistic and terminological information, the sys-
tem derives logical forms for text taken from documents in the GENIA
corpus and a subset of full-text documents indexed in MEDLINE. Natu-
ral language questions are processed with the same mechanism, and the
system derives an answer using a theorem proving process.

6. Literature-Based Discovery

While the extraction of explicit relations and events among biomedical
entities can be used to produce rich document summaries and enable
complex question answering systems, an exciting use of these methods
aims to uncover relationships that are not present in the text, but that
can be inferred from other information. Literature-based discovery refers
to the task of utilizing scientific literature to uncover “hidden,” previ-
ously unknown or neglected relationships between existing knowledge.
The goal of discovering these implicit relationships is to identify relations
worthy of further scientific investigation or to find evidence supporting
suspected relations.

As a technique useful for biomedical text mining, literature-based dis-
covery was pioneered by the work of Swanson in the 1980s. Swanson
suggested that novel information could be uncovered by systematically
reviewing “complementary but disjoint” bodies of literature [192]. In
what has become the prototypical example of literature-based discovery,
Swanson linked fish oil, a substance widely-understood to have potential
cardiovascular benefits, with Raynaud’s syndrome, a vasospastic disor-
der causing the narrowing of blood vessels [189]. The discovery suggests
fish oil supplements may help to control the symptoms of Raynaud’s syn-
drome. To further demonstrate the feasibility of his ideas, Swanson later
found evidence for relationships between migraine and magnesium [190],
somatomedin C and arginine [191], and viruses and their potential use
as biological weapons [194].

The basic premise of Swanson’s approach is that there exists two scien-
tific communities that do not communicate. A portion of the knowledge
in one community may be related to or complement knowledge in the
other one, but this relationship is unknown to either community. For
example, suppose a scientific community has researched the relationship
between a medical finding or characteristic B and a disease C. Further
suppose that a separate community has studied the affects of substance
A on characteristic B. The use of literature-based discovery techniques
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may suggest an A-C relationship, indicating in this example that sub-
stance A may potentially treat disease C.

Weeber et al. [220] distinguish between two modes of discovery. A
“closed discovery,” or hypothesis testing study, begins with known A-
and C-terms. Thus, the discovery concerns finding novel B-terms that
may explain the observed A-C association or hypothesis. On the other
hand, an “open discovery,” or hypothesis generation study, begins with
known A-B associations in one domain and seeks to discover B-C re-
lations in another domain, thereby suggesting or generating a potential
A-C association.

Since the pioneering work of Swanson, literature-based discovery tech-
niques have seen widespread use. Existing approaches can be grouped by
the way in which they identify potentially novel relationships. There are
those that depend exclusively on the co-occurrence of terms or concepts,
those that make use of semantic information to inform the processing
of co-occurring terms, and those that construct interaction networks of
individual relations whose paths can reveal hidden associations. Some
recent methods following these general approaches are reviewed below.
Unlike other text mining tasks, measuring the performance of literature-
based discovery tools is not straightforward, and a discussion of system
evaluation follows as well.

Co-occurrence-based methods are among the simplest, although less
precise, approaches to literature-based discovery. Like the most ba-
sic approaches to the relation extraction task (Section 3), these meth-
ods seek to identify terms that frequently occur together. However,
whereas approaches to relation extraction identify first-order term co-
occurrences, approaches to literature-based discovery explore second-
order co-occurrences—the shared co-occurrences of two given biomedical
entities [238].

Most of the earliest approaches to literature-based discovery and many
modern approaches rely on entity co-occurrence statistics. The Arrow-
smith [193, 185, 182, 183, 199, 186] two-node search tool implements
Swanson’s original approach to find biologically meaningful links be-
tween two sets of articles in PubMed using title words and phrases.
Recent work related to this project has developed a method to esti-
mate and rank the relevance of associations. BITOLA [74, 73, 72, 75]
is a similar literature-based discovery system, but instead of identifying
relations using title words, it represents documents using their MeSH
terms and recognized gene symbols. Additionally, BITOLA uses asso-
ciation rules [6] as a measure of concept relatedness instead of word
frequencies. LitLinker [227] also utilizes MeSH terms; however, it uses a
statistical approach based on the background distribution of term proba-
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bilities to identify correlated concepts. Jelier et al. [82] describe a system
that identifies functional associations between genes and other biomed-
ical concepts. Their approach measures the strength of association of
co-occurring concepts using a log likelihood ratio. RaJoLink [151] pro-
vides semi-automated suggestions for links between two sets of articles
based on rare terms identified in the literature. FACTA+ [203] uses an
information theoretic score to rank indirectly associated concepts. It
identifies explicit associations among biomedical entities using methods
inherited from an earlier version of the system [206]. Finally, unlike other
literature-based discovery methods that rely on associations explicit in
scientific literature, Benton et al. [18] use a corpus of posts to Internet
breast cancer message boards to discover adverse drug effects.

Because systems relying solely on co-occurrence statistics tend to pro-
duce a large number of spurious relations, recent approaches increasingly
rely on semantic information to identify hidden relations or augment the
processing of co-occurring entities. Hristovski et al. [71] describe an im-
provement to BITOLA that uses the semantic predications produced by
SemRep and BioMedLEE [114] to enable users to eliminate uninterest-
ing or incorrect relations. A similar approach is used in the EpiphaNet
system [35], an interactive visualisation tool for exploring associations
between concepts found in MEDLINE. EpiphaNet makes extensive use
of MetaMap and SemRep for identifying explicit relations. Other sys-
tems, including Weeber et al.’s DAD-system [220], filter candidate rela-
tions based on the UMLS semantic type of identified B-terms. Recall
that for hypothesis generation, B-terms are used to uncover hidden A-C
relations from explicit A-B and B-C associations. Hu et al. [76] de-
scribe a literature-based discovery method that uses association rules as
a measure of concept relatedness but also filters potential relations using
UMLS semantic types.

Another approach to discovering hidden relationships among biomedi-
cal entities involves the construction of interaction networks whose paths
can reveal indirect associations. Seki and Mostafa [174] build an infer-
ence network [208] to predict implicit gene-disease associations. Genes
and diseases are connected within the graph by intermediary nodes rep-
resenting gene functions and phenotypes. Similarly, Özgür et al. [145,
146] build a gene-interaction network by collecting an initial set of known
disease-related genes from biomedical texts using dependency parsing
and SVMs. They then use network centrality metrics to predict gene-
disease associations. Finally, Palakal et al. [149] describe BioMap, a
directed graph that is constructed from explicit relationships between
biomedical entities identified within text. Users are able to query the
graph to uncover implicit associations among the entities.
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Due to the nature of uncovering novel information, there is no ground
truth available for evaluating literature-based discovery systems, and
comparing the relative performance of alternative approaches is difficult.
A common method for evaluating an automatic discovery technique is to
use the system to replicate known discoveries, such as Swanson’s linking
of Raynaud’s syndrome with fish oil or migraine with magnesium [220].
However, Yetisgen-Yildiz and Pratt [228] suggest this approach is un-
informative of the overall performance of a system. They describe an
alternative methodology that divides the abstracts in MEDLINE into
two sets: those that were published before a given cut-off date, and
those that were published after this date. Literature-based discovery
methods are then applied to the older set of abstracts as hypotheses
generating systems and to the newer set as hypotheses testing systems,
using the generated associations from the older set as input. The per-
formance of a system can then be quantified using standard information
retrieval evaluation methods.

7. Conclusion

The past several years have seen some exciting developments in biomedi-
cal text mining. Progress was made in (1) defining and attempting more
challenging tasks, such as event extraction and clinical text mining; (2)
increasing the public availability of and community investment in re-
sources, such as the MIMIC II database and the ORBIT registry; and
(3) development and use of common frameworks, such as UIMA.

It is interesting to compare the development of the field to the desir-
able directions outlined by the leading researchers in 2008 [9]. At that
time, the researchers were asked about the importance of text mining
for biology, the utility of the text mining systems, and future directions.

The first suggested avenue for future research was fusing literature and
biological databases through text mining. Understandably, this requires
engaging the publishers of scientific literature and realizing potentially
additional efforts by the publications’ authors. To that end, Elsevier is
piloting a tool, Reflect-Network [147], developed in partnership with the
European Molecular Biology Laboratory and the Novo Nordisk Founda-
tion Center for Protein Research. Reflect tags proteins and chemicals in
documents and generates a graphical representation displaying interac-
tions between entities and additional details about them.

The second proposed research direction was interactivity and user in-
terfaces. This direction requires identifying more potential user groups
and tasks. Progress was made in developing tools for database cura-
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tion [223, 150]; however, more research is still needed in identifying user
groups and tasks in parallel with tool development for known users.

The authors noted that success in the third direction, tool scala-
bility and integration into workflows, depends on commonly accepted
and used stable standards for the exchange and integration of infor-
mation derived from text mining. Despite major initiatives towards
seamless data exchange and interoperability (e.g., the i2b2 hive [80] or
the eMERGE Network [51]) and pilot applications being included into
workflows (e.g., NLM InfoBot [46]), this direction remains challenging.
The efforts needed to make a system scalable and capable of handling
real-time workflow interactions were recently demonstrated in the IBM
DeepQA project [53].

The last direction, development of text mining resources, is an ongoing
activity. Existing lexicons, standards, and ontologies are maintained—
and new resources and community-wide evaluations emerge—following
the progress in biology and medicine.
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