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Abstract

This paper presents a “bag of keypoints” based medi-
cal image retrieval approach to cope with a large variety
of visually different instances under the same category or
modality. Keypoint similarities in the codebook are com-
puted using a quadratic similarity measure. The code-
book is implemented using a topology preserving SOM map
which represents images as sparse feature vectors and an
inverted index is created on top of this to facilitate efficient
retrieval. In addition, to increase the retrieval effectiveness,
query expansion is performed by exploiting the similarities
between the keypoints based on analyzing the local neigh-
borhood structure of the SOM generated codebook. The
search is thus query-specific and restricted to a sub-space
spanned only by the original and expanded keypoints of the
query images. A systematic evaluation retrieval results on
a biomedical image collection of 5000 biomedical images
of different modalities, body parts, and orientations shows
a halving in computation time (efficiency) and 10% to 15%
improvement in precision at each recall level (effectiveness)
when compared to individual color, texture, edge-related
features.

1 Introduction

In a heterogeneous medical collection with multiple
modalities, such as ImageCLEFmed benchmarks !, images
are often captured with different views, imaging and light-
ing conditions, similar to the real world photographic im-
ages. Distinct body parts that belong to the same modality
frequently present great variations in their appearance due
to changes in pose, scale, illumination conditions and imag-
ing techniques applied. Ideally, the representation of such
images must be flexible enough to cope with a large vari-
ety of visually different instances under the same category
or modality, yet keeping the discriminative power between
images of different modalities.

Thttp://ir.ohsu.edu/image/

Recent advances in computer vision and pattern recog-
nition techniques have given rise to extract such robust and
invariant features from images, commonly termed as affine
region detectors [1]. The regions simply refers to a set of
pixels or interest points which are invariant to affine trans-
formations, as well as occlusion, lighting and intra-class
variations. This differs from classical segmentation since
the region boundaries do not have to correspond to changes
in image appearance such as color or texture. Often a large
number, perhaps hundreds or thousands, of possibly over-
lapping regions are obtained. A vector descriptor, such as
scale invariant feature transform (SIFT) [2] is then associ-
ated with each region, computed from the intensity pattern
within the region. This descriptor is chosen to be invari-
ant to viewpoint changes and, to some extent, illumination
changes, and to discriminate between the regions. The cal-
culated features are clustered or vector quantized (features
of interest points are converted into visual words or key-
points) and images are represented by a bag of these quan-
tized features (e.g., bag of keypoints) so that images are
searchable in a similar manner with “bag of words” in text
retrieval [3].

The idea of clustering invariant descriptors of image
patches and represent images with “bag of keypoints” has
already been applied to the problem of texture classifi-
cation and recently for generic visual categorization with
promising results [4, 5]. For example, the work described
in [5] presents a computationally efficient approach which
has shown good results for objects and scenes categoriza-
tion. Besides, being a very generic method, it is able to
deal with a great variety of objects and scenes. Moti-
vated by this, we present a correlation-enhanced “bag of
keypoints” based biomedical image retrieval approach. In
this approach, the SIFT features are extracted at first from
the interest points and then vector quantized by the Self-
Organizing Map (SOM)-based clustering to build a visual
vocabulary of keypoints. By mapping the interest points
extracted from one image to the words in the visual vocab-
ulary, their occurrences are counted and the resulting his-
togram is called the “bag-of-keypoints” for that image. The
similarities/correlations between the keypoints are analyzed
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Figure 1. Block diagram of the retrieval frame-
work

in the collection as a whole to construct a global similar-
ity thesaurus that is finally utilized in a distance measure
function to compare query and target images in a database.
However, due to the quadratic nature, the similarity mea-
sure is computationally intensive. To overcome this, only
a subset of the images of the entire collection is compared
based on a local neighborhood analysis in an inverted index.
The codebook or topology preserving SOM map is utilized
to represent images as sparse feature vectors and an inverted
index is created on top of this to facilitate efficient retrieval.
The block diagram of the proposed image retrieval frame-
work is shown in Fig. 1.

The organization of the paper is as follows: In Sec-
tion 2, the “Bag of Keypoints”-based image representation
approach is discussed. Section 3 presents a correlation-
enhanced similarity matching approach and Section 4
presents the searching approach in an inverted index. The
experiments and analysis of the results are presented in Sec-
tions 5 and 6. Finally, Section 7 provides our conclusions.

2 ‘“Bag of Keypoints” based Image Represen-
tation

A major component of this retrieval framework is the de-
tection of interest points in scale-space, and then determine
an elliptical region for each point. Interest points are those
points in the image that possess a great amount of infor-
mation in terms of local signal changes [1]. In this study,
the Harris-affine detector is used as interest point detection
methods [6]. In this case, scale-selection is based on the

Laplacian, and the shape of the elliptical region is deter-
mined with the second moment matrix of the intensity gra-
dient.

A vector descriptor which is invariant to viewpoint
changes and to some extent, illumination changes is then
associated with each interest point, computed from the in-
tensity pattern within the point. We use a local descriptor
developed by Lowe [2] based on the Scale-Invariant Feature
Transform (SIFT), which transforms the image information
in a set of scale-invariant coordinates, related to the local
features. SIFT descriptors are multi-image representations
of an image neighborhood. They are Gaussian derivatives
computed at § orientation planes over a 4 x 4 grid of spa-
tial locations, giving a 128-dimension vector. Recently in
a study [1] several affine region detectors have been com-
pared for matching and it was found that the SIFT descrip-
tors perform best. SIFT descriptor with affine covariant re-
gions gives region description vectors, which are invariant
to affine transformations of the image. A large number of
possibly overlapping regions are obtained with the Harris
detector. Hence, a subset of the representative region vec-
tors is then selected as a codebook of keypoints by applying
a SOM-based clustering algorithm [7].

For each SIFT vector of interest point in an image, the
codebook is searched to find the best match keypoint based
on a distance measure (generally Euclidean). Based on the
encoding scheme, an image I; can be represented as a vec-
tor of keypoints as

cwij )t (1)

where each element w;; represents the normalized fre-
quency of occurrences of the keypoints ¢; appearing in I;.
This feature representation captures only a coarse distribu-
tion of the keypoints that is analogous to the distribution of
quantized color in a global color histogram.

3 Quadratic Similarity Matching

This section presents the similarity matching approach
in the keypoint feature space by considering the similarities
between the keypoints in the codebook. For the correla-
tion analysis, we construct a global structure or thesauruses
in the form of a similarity matrix where each element de-
fines the keypoint similarities in an Euclidean space. Fi-
nally, this global matrix is utilized in a Quadratic form of
distance measure to compare a query and database images.

The quadratic distance measure is first implemented in
the QBIC [8] system for the color histogram-based match-
ing. It overcomes the shortcomings of the L-norm distance
functions by comparing not only the same bins but multi-
ple bins between color histograms. The keypoint-based fea-
ture representation is at a higher level then the simple pixel-
based color feature representation due its invariant nature.
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Since, the keypoint vectors in the codebook are already rep-
resented in a feature space based on the SIFT feature [2],
we can use them directly to generate a keypoint-keypoint
similarity matrix.

Definition 1 The keypoint-keypoint similarity matrix
SNxN = [Su,w] is built through the computation of each
element s, , as the Euclidean similarity values between
two vectors ¢, and c,, of concept prototypes c,, and ¢, as

1

T 1+ dis (CusCy) @

Su,p = Sim (Cy, Cy)
where c,, and c,, are 128-dimensional SIFT feature vector
and ¢, ¢, € C where N is the size of the codebook C' and
dis (¢, cy) denote the Euclidean distance between c,, and
Cy.

Finally, the global matrix S is utilized in the quadratic
form of distance measure to compare a query and database
images as

Dis(I, 1) = \/(E, ~ £;)7S(f, ;) ()

Here, f; and f; are the feature vector for the query image I,
and a target image I; respectively.

4 Searching in Inverted Index

The distance measure described in Section 3, computes
the cross correlations/similarities between the concepts,
hence it requires longer computational time as compared
to the L-norm (e.g., Euclidean) or cosine based distance
measures. One solution is to compare only a subset of im-
ages from the entire collection. In large database applica-
tions, the indexing or pre-filtering techniques are essential
to avoid exhaustive search in the entire collection. The in-
verted file is a very popular indexing technique for the vec-
tor space model in IR [3]. An inverted file contains an entry
for every possible terms and each term contains a list of the
documents if the documents have at least one occurrence

of that particular term. In CBIR domain, an inverted index
is used in a suitable sparse set of color and texture feature
space of dimension more then ten thousands in [9]. Moti-
vated by their success, we present an enhanced inverted in-
dex to reduce the search time that considers the similarities
between the keypoint prototypes by exploiting the topology
preserving property of the SOM generated codebook. Our
goal is to decrease the response time where the codebook
is used as an inverted file to store the mapping from con-
cepts to images. In this index, for each keypoint prototype
in a codebook, a list of pointers or references to images that
have at least one region map to this concept is stored in a
list. Hence, an image in the collection is a candidate for fur-
ther distance measure calculations if it contains at least one
region that corresponds to a concept ¢; in a query image.

Now, to consider the similarity factor between the con-
cepts, the simple lookup strategy in inverted index is modi-
fied slightly.

Definition 2 Each keypoint prototype c;(z,y) € C has a
local y-neighborhood LN.,(x,y) in a two-dimensional grid
of codebook as depicted in Figure 2. We have

LN, (z,y) = {ck(u,v) : max{|u — z|,|[v —y[}} )

Here, the coordinates (x,y) and (u,v) denote the row and
column-wise position of any two keypoint prototypes c;
and cy, respectively where z,u € {1,---, P} and y,v €
{1,---, P} for a codebook of size N = P x P units. The
value of v can be from 1 up to a maximum of P — 1.

In this approach, for each keypoint prototype ¢; € I,
with a weight (e.g., #f-idf based weighting) w;,, we expand
it to other |w;q % (|S,| — 1)] keypoint prototypes based on
the topology preserving ordering in a codebook. Here, S,
contains all the keypoint prototypes including c; up to a lo-
cal neighborhood level LN.,. For example, Figure 2 shows
the local neighborhood structure of a keypoint prototype in
a two-dimensional codebook based on Definition 2. Here,
each keypoint prototype is visualized as a circle on the grid
and the black circle in the middle denotes a particular key-
point prototype c¢;(x,y). The keypoint prototype cx(u,v)
is three neighborhood level (e.g., LN3) apart from c;(x, y)
based on Definition 2 as the maximum distance between
them (coordinate-wise) either in horizontal or vertical di-
rection is three. Basically, all the gray circles within the
square are positioned in the LN; neighborhood, the gray
and yellow circles are positioned up to LN, and gray, yel-
low and blue circles in combine are positioned up to LN
neighborhoods of ¢; as shown in the Figure 2. As the value
of = increases, the number of neighboring keypoint proto-
types increases for c;.

For the query expansion, the keypoints other then c; are
considered by subtracting it from S,,. After the expansion,
those images that appear in the list of expanded keypoints



are deemed as candidates for further similarity matching
while the other images are ignored. A larger v will lead
to more expanded keypoints, which means that more im-
ages need to be compared with the query. This might lead
to more accurate retrieval results in a trade off of the larger
computational time. After finding the |S,| — 1 keypoint
prototypes, they are ranked based on their similarity values
with ¢; by looking up the corresponding entry in the ma-
trix S. This way the relationship between two keypoints are
actually determined by both their closeness in the topology
preserving codebook and their similarity obtained from the
matrix S. Finally, the top |w;q x (]Sy] — 1)] keypoints
are selected as expanded keypoints for ¢;. Hence, a key-
point with more weight in a query vector will be expanded
to the more closely related keypoints and as a result will
have more influence to retrieve candidate images. There-
fore, the enhanced inverted index contains an entry for a
keypoint that consists of a list of images as well as images
from closely related concepts based on the local neighbor-
hood property. The steps of the above process are described
in Algorithm 1. Figure 3 shows an example of the above
processing steps. Here, for a particular keypoint ¢; with the
associated weight in vector as wj, that is presented in the
query image I,, the corresponding location of the keypoint
in the codebook is determined. Suppose, based on the LNy
neighborhood of the above algorithm, only two concepts cy,
and c,, are further selected for expansion. After finding the
expanded keypoint prototypes, the images in their inverted
lists are merged with the original set of images and con-
sidered for further distance measure calculation for ranked-
based retrieval. Therefore, in addition to considering all the
images in the inverted list of ¢; (images under black dotted
rectangle), we also need to consider the images in the list
of ¢;, and ¢,,, (under the blue dotted rectangle) as candidate
images. Due to the space limitations, all the actual links
are not shown in Figure 3. In this way, the response time is
reduced while the retrieval accuracy is still maintained.

5 Experiments

The image collection for experiment comprises of 5000
bio-medical images of 32 manually assigned disjoint global
categories, which is a subset of a larger collection of six dif-
ferent data sets used for medical image retrieval task in Im-
ageCLEFmed 2007 [10]. In this collection, images are clas-
sified into three levels. In the first level, images are catego-
rized according to the imaging modalities (e.g., X-ray, CT,
MRI, etc.). At the next level, images at each of the modali-
ties is classified according to the examined body parts (e.g.,
head, chest, etc.) and finally images are further classified
by orientation (e.g., frontal, sagittal, etc.) or distinct visual
observation (e.g. CT liver images with large blood vessels).
The disjoint categories are selected only from the leaf nodes

Algorithm 1 Similarity Matching in Modified Inverted File

1: Initially compute the global similarity matrix S off-
line. Let, the feature vector of a query image I, be

£, = [wig - wig---wnglT in a keypoint-based fea-
ture space. Initialize the list of candidate image as
L = ¢.

2: fori =1to N do
3 ifwyy > 0(.e., ¢ € 1) then

4: Locate the corresponding keypoint prototype c; in
the two-dimensional codebook C'.

5: Read the corresponding list L., of images from the
inverted file and add itto L as L « L U Ly,

6: Consider up to LN, neighborhoods of ¢; to find
related |S,| — 1 keypoint prototypes.

7: For each ¢; € S, — {¢;}, determine its ranking

based on the similarity values by looking up cor-
responding entry s;; in matrix S.

8 Consider the top k = |w;q x (|S,| — 1)] ranked
keypoint prototypes in set S* for further expan-
sion.

9: for each ¢, € S* do

10: Read the corresponding list as L(cy) and add to

Las L <+ LUL,, after removing the duplicates.

11: end for

122 end if

13: end for

14: for each I; € L do

15:  Apply the distance matching functions of Equation

(3) between I, and I; based on the Matrix S.

16: end for

17: Finally, return the top K images by sorting the distance
measure values in ascending order (e.g., a value of 0
indicates closest match).

B Codehosk

Codebook

Inverted Index

Query Vector

Figure 3. Example process of Query Expan-
sion in an Inverted File
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Figure 4. PR-graphs of different feature
spaces.

(grey in color) to create the ground-truth data set.

To build the codebook based on the SOM clustering, a
training set of images is selected beforehand for the learning
process. The training set used for this purpose consists of
10% images of the entire data set (5000 images) resulting
in a total of 500 images. For a quantitative evaluation of the
retrieval results, we selected all the images in the collection
as query images and used query-by-example (QBE) as the
search method. A retrieved image is considered a match if
it belongs to the same category as the query image out of
the 32 disjoint categories at the global level.

6 Results

Fig. 4 shows the precision-recall (PR) curves of the
keypoints-based image representation with two different
codebook sizes (e.g., 256 (16 x 16) and 400 (20 x 20 ) units)
by performing the Euclidean similarity matching. The per-
formances were also compared to three low-level color, tex-
ture, and edge related features to judge the actual improve-
ment in performances of the proposed methods. The reason
of choosing these three low-level feature descriptors is that
they present different aspects of medical images. For color
feature, the first (mean), second (standard deviation ) and
third (skewness) central moments of each color channel in
the RGB color space are calculated to represent images as
a 9-dimensional feature vector. The texture feature is ex-
tracted from the gray level co-occurrence matrix (GLCM).
A GLCM is defined as a sample of the joint probability den-
sity of the gray levels of two pixels separated by a given dis-
placement and angle [11]. We obtained four GLCM for four
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Figure 5. PR-graphs of different searching
criteria.

different orientations (horizontal 0°,vertical 90 °, and two
diagonals 45 ° and 135 °). Higher order features, such as
energy, maximum probability, entropy, contrast and inverse
difference moment are measured based on each GLCM to
form a 5-dimensional feature vector and finally obtained a
20-dimensional feature vector by concatenating the feature
vector for each GLCM. Finally, to represent the shape fea-
ture, a histogram of edge direction is constructed. The edge
information contained in the images is processed and gener-
ated by using the Canny edge detection (with ¢ = 1, Gaus-
sian masks of size = 9, low threshold = 1, and high thresh-
old = 255) algorithm [12]. The corresponding edge direc-
tions are quantized into 72 bins of 5° each. Scale invariance
is achieved by normalizing this histograms with respect to
the number of edge points in the image. By analyzing the
Fig. 4, we can observe that the performance of the proposed
keypoints-based feature representation is better when com-
pared to the low-level features in term of precision at each
recall level. The better performances are expected as the
keypoints-based features are more localized in nature and
invariant to viewpoint and illumination changes.

Fig. 5 shows the PR-curves of the keypoints-based
image representation (codebook size of 400) by perform-
ing the Euclidean (e.g., “Keypoint-Euclidean”) similar-
ity matching and the Quadratic similarity matching (e.g.,
“Keypoint-Quadratic”). From Fig. 5, we can also ob-
serve that, the Quadratic similarity matching approach per-
formed much better when compared to the Euclidean sim-
ilarity matching. Although, we observe a decrease in per-
formance when the search is performed in the inverted in-
dex based on the associated keypoints in each image (e.g.,
“Keypoint-Quadratic-IF”). This is due to the fact that there
might be some quantization and encoding errors which oc-



curred during the codebook generation and image represen-
tation steps. However, when we exploited the local neigh-
borhood structure of the codebook by considering up to two
levels and performed search in the inverted index with the
expanded keypoints (e.g., “Keypoint-Quadratic-IF-LN2”),
performance is increased compared to the Euclidean-based
matching or without using the modified indexing as shown
in Fig. 5. Overall, the improved result indicate that the cor-
relations among the keypoints are not negligible and can be
exploited effectively in the similarity matching function as
well as in the inverted index.

The major gain in searching on a inverted index is that it
takes less computational time compared to a linear search
in the entire collection. Hence, to test the efficiency of
the search schemes for the keypoint-based feature, we also
compared the average retrieval time with and without the
indexing scheme. The search time is significantly reduced
(nearly half) with the use of inverted index for both Eu-
clidean and Quadratic similarity matching functions com-
pared to the linear searching. In addition, the search time
in the modified inverted index is slightly more compared to
using without any modification. However, with this slight
increase in time, we achieved better precision at each re-
call level as shown in Fig. 5, justifying its use. The
Quadratic similarity matching in the modified inverted in-
dex has proved to be both effective and efficient.

7 Conclusions

We have investigated the “bag of keypoints” based im-
age retrieval approach in medical domain inspired by the
ideas of the text retrieval. Due to the nature of the keypoint-
based image representation scheme, there always exists
enough correlations between the keypoints in medical im-
ages. Hence, exploiting this property in the similarity
matching and the inverted indexing schemes improved the
retrieval effectiveness and efficiency as shown in the ex-
perimental section. In future, when the object recognition
techniques will be mature enough, our approaches would
be easily extendible to a higher level concept-based image
representation and retrieval approaches.
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