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Objectives: To investigate whether (1) machine learning classifiers can help identify nonrandomized
studies eligible for full-text screening by systematic reviewers; (2) classifier performance varies with
optimization; and (3) the number of citations to screen can be reduced.
Methods: We used an open-source, data-mining suite to process and classify biomedical citations that
point to mostly nonrandomized studies from 2 systematic reviews. We built training and test sets for
citation portions and compared classifier performance by considering the value of indexing, various
feature sets, and optimization. We conducted our experiments in 2 phases. The design of phase I with
no optimization was: 4 classifiers × 3 feature sets × 3 citation portions. Classifiers included k-nearest
neighbor, naïve Bayes, complement naïve Bayes, and evolutionary support vector machine. Feature sets
included bag of words, and 2- and 3-term n-grams. Citation portions included titles, titles and abstracts,
and full citations with metadata. Phase II with optimization involved a subset of the classifiers, as well as
features extracted from full citations, and full citations with overweighted titles. We optimized features
and classifier parameters by manually setting information gain thresholds outside of a process for iterative
grid optimization with 10-fold cross-validations. We independently tested models on data reserved for
that purpose and statistically compared classifier performance on 2 types of feature sets. We estimated
the number of citations needed to screen by reviewers during a second pass through a reduced set of
citations.
Results: In phase I, the evolutionary support vector machine returned the best recall for bag of words
extracted from full citations; the best classifier with respect to overall performance was k-nearest neigh-
bor. No classifier attained good enough recall for this task without optimization. In phase II, we boosted
performance with optimization for evolutionary support vector machine and complement naïve Bayes
classifiers. Generalization performance was better for the latter in the independent tests. For evolution-

ary support vector machine and complement naïve Bayes classifiers, the initial retrieval set was reduced
by 46% and 35%, respectively.
Conclusions: Machine learning classifiers can help identify nonrandomized studies eligible for full-text
screening by systematic reviewers. Optimization can markedly improve performance of classifiers. How-
ever, generalizability varies with the classifier. The number of citations to screen during a second
independent pass through the citations can be substantially reduced.
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1. Introduction

Translation of biomedical research into practice depends in part
on the production of systematic reviews that synthesize available
evidence for clinicians, researchers, and policymakers. Unfortu-
nately, remarkable growth in the number of reviews has not kept
pace with growth in the number of medical trials, which are sources
of evidence [1]. The problem is even more serious because most

reviews are traditional rather than systematic. What is needed is
streamlined production of the latter [1,2] to better control known
threats to validity [3] while promoting transparent and repro-
ducible science.

dx.doi.org/10.1016/j.artmed.2012.05.002
http://www.sciencedirect.com/science/journal/09333657
http://www.elsevier.com/locate/aiim
mailto:tcb24@pitt.edu
mailto:ddemner@mail.nih.gov
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To support the creation and maintenance of quality systematic
eviews (also known as evidence reports or comparative effective-
ess reviews), a global network of Cochrane entities [4] and a North
merican network of AHRQ-funded Evidence-based Practice Cen-

ers [5,6] exist. Even so, production is slow. For example, Tricco et al.
7] report that 19% of protocols published in the respected Cochrane
ibrary fail to reach fruition as full reviews. Of those that are pub-
ished as reviews, the average time to completion is 2.4 years with
reported maximum of 9 years, which is the ceiling imposed by the
tudy design. Worse, these estimates ignore time spent exploring
he literature to assess significance of possible review questions,
nd then time spent developing a protocol.

A major bottleneck occurs when teammates screen studies. In
two-step process involving independent and replicated effort,

eammates first identify provisionally eligible studies by reading
ypically thousands of citations. Then they repeat the process by
eading full texts of studies identified in the first step to select
he final set of studies for inclusion in a review. In other words,
o be included in a review, a study must first appear to meet eli-
ibility criteria based on reading its citation; if so, it is eligible for
ull-text review and provisionally eligible for inclusion in the sys-
ematic review. However, not until the full text of its report has
een carefully considered in light of the protocol is a final decision
ade whether to include a study.
In a best-case scenario, teammates compare their decisions and

esolve their differences after each step, usually by discussion. It
s worth noting that screening procedures vary. For example, some
eview teams will consider a study for full-text review if at least one
eammate thinks the citation (title plus abstract) appears to meet
ligibility criteria. In contrast, other teams work to reach consensus
hen screening citations before they will consider a study worth

eading as full text. Presumably, the latter procedure for screen-
ng citations is more labor intensive. The point is that workflow
atterns vary by review team and topic (A. McKibbon, PhD, writ-
en communication, December 2010). Furthermore, it is likely that
stimates of workload for professional review teams associated
ith established centers are underestimates for inexperienced vol-
nteer teams that may be conducting one-off reviews, e.g., when

aunching new research programs.
The research that serves as the foundation for this study was

onducted by Aphinyanaphongs et al. [8], and later extended by
ilicoglu et al. [9]. Their work entailed supervised machine learn-

ng methods and natural language processing to identify rigorous
linical trials in broad domains, such as therapy, rather than top-
cal domains defined by review questions. Based on the work of
aynes and colleagues in a series of papers (e.g., see [10]), rigor
as presumed if trials comparing treatments were randomized and

ontrolled. However, identifying nonrandomized (NR) studies for
nclusion in systematic reviews is an important problem because
andomized controlled trials (RCTs) may be unlikely or even uneth-
cal for some research questions [11,12]. For example, NR studies,
uch as case-control, cross-sectional, and cohort studies, are com-
only employed to investigate exposure to environmental hazards,

iagnostic test accuracy, disease etiology, human development,
nvasive surgery, adverse events, and rare disorders. Notably, in

hat is perhaps the first study to use machine learning methods to
dentify topically relevant trials for inclusion in systematic reviews,
lassification involved randomized and controlled drug trials [13],
hich is in keeping with the foundational research of [8].

For many review questions, the classification task involves a mix
f designs because reviewers search for NR studies (if eligible) in
ddition to RCTs. The latter are preferred because they tend to be

ess biased relative to NR studies. However, when NR studies are
ligible for inclusion in a systematic review, the Cochrane Non-
andomised Studies Methods Group enjoins investigators to not

nclude design terms in their search filters [12]. Although filters
lligence in Medicine 55 (2012) 197–207

exist to reliably retrieve RCTs [14], filters “to identify other study
types are limited” (Appendix 2 in [15]; see also [11]). This is true
even though development of filters is ongoing (e.g., see [16–20]).
Thus, the initial screening phase can be more labor intensive when
NR studies are eligible. In response to this dilemma, some of the
Cochrane Review Groups allow NR design terms when the retrieval
set is so large that the review becomes impractical (e.g., see [21]).
If we take seriously the preference for not including design terms
in searches for NR studies, an informatics solution to assist review
teams seems especially warranted.

Researchers interested in [semi-]automating the screening
phase for systematic reviews are currently using the classifiers
complement naïve Bayes (cNB) [22] or a Support Vector Machine
(SVM) with a linear kernel [23,24], or are developing a factorized
version of cNB [25]. The fact that these researchers are using differ-
ent classifiers for their specific tasks indicates that understanding
relative classifier performance is a necessary step for our task. Thus,
we are interested in empirically comparing the performance of
several supervised machine learning classifiers for a binary clas-
sification task using biomedical citations from extant systematic
reviews. The task is binary because we want to classify primary
studies as being eligible or not for further consideration by the
review team. We also consider no optimization vs. optimization
of features and parameters. Interestingly, a comparative study of
classifiers by Colas and Brazdil [26] is sometimes cited as support
for using a particular classifier. They found that an optimized k-
nearest neighbor (k-NN) or naïve Bayes (NB) classifier could be as
good as a linear SVM based on 20,000 newsgroup e-mails. How-
ever, they cautioned that their results should be validated for other
document classification tasks to ensure generalizability. In sum,
classifiers useful for newsgroup e-mail may not be as useful for
biomedical citations. Thus, comparative studies of classifiers are
warranted.

In general, our motivation for conducting this research is sim-
ilar to that of other groups [13,22–25], i.e., we want to facilitate
production of systematic reviews. However, we are interested in
assisting reviewers (regardless of experience or affiliation) by iden-
tifying classifiers that can reduce the number of citations that must
be screened during a second independent pass through a set of
citations. We interpret the usefulness of a classifier with respect to
reducing the number of citations to screen rather than time spent
screening because of differences in procedures, reviewer expertise,
and number of teammates available for dividing the labor. In other
words, valid baseline estimates of time spent screening and subse-
quent reductions in time depend on several variables that are not
the focus of this study.

Additionally, until this relatively new area of translational infor-
matics research matures, we assume that reviewers will insist on at
least one complete cycle where human(s) screen the full set of cita-
tions. We further assume that a team consists of at least two people
to ensure independent and replicated screening. In reality, more
than one teammate can screen citations for the first pass as long as
other people independently screen the same citations during the
second pass. This procedure is meant to control random errors and
bias introduced by humans. However, there are times when even
two people cannot independently screen the entire set of citations.
When this is the case, Cochrane suggests “a second person look at a
sample [emphasis added] of the records” [27]. This is precisely our
intention, i.e., we envision a machine learning system that returns
a reduced set or sample of citations to screen for the second pass.
The reduced set would include most if not all of the citations labeled
as eligible for full-text review, as well as a subset of those labeled

as ineligible during the initial screening. Human reviewers would
still have to reach consensus regarding discrepant eligibility deci-
sions from the first pass through the entire set when compared
to a second pass through the reduced set (see Fig. 1). Assisting
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Fig. 1. Machine learning can reduce the number

eviewers in this way would enable a more focused, independent
creening of citations during the second pass. Reviewer bias and
rror would be controlled, in part, because of the opportunity for a
econd screening by different teammate(s) who could potentially
dentify studies overlooked by the first reviewers. Furthermore, the

orkload would be reduced because the disproportionately large
et of citations identified as ineligible by both humans and machine
ould be eliminated from further consideration.

In sum, we conducted this study to investigate whether (1)
achine learning classifiers can help identify NR studies eligi-

le for full-text screening by systematic reviewers; (2) classifier
erformance varies with optimization of parameters and features
xtracted from biomedical citations; and (3) the number of citations
o screen can be reduced. We did this by empirically compar-
ng classifier performance using citations that point to mostly NR
tudies, varying optimization conditions, and then estimating the
eduction in the number of citations to screen for the best classifier.

. Methods

The citations for this study were from 2 Cochrane systematic
eviews. One has to do with surgical interventions for treating
meloblastomas of the jaws [21] and the other with vaccines
or preventing influenza in the elderly [28]. By using citations
rom extant systematic reviews, we capitalized on domain-specific
nowledge. This is because citations were initially retrieved by
ochrane trials search coordinators who developed filters given
eviewers’ knowledge of their topics.

For the ameloblastoma dataset, we had access to the entire set
f citations (N = 1815) retrieved from MEDLINE [29], EMBASE [30],
he Cochrane Central Register of Controlled Trials, and the Cochrane
ral Health Group Trials Register. For the influenza dataset, we

etrieved 5485 citations (94%) by re-running published MEDLINE
nd EMBASE searches. We also manually searched for 147 studies

ot in our retrieval set, but listed in the review as eligible for further
onsideration.

We managed citations in EndNote and recorded decisions as
ither exclude or include. Decisions were based on the consensus of
tions needed to screen by systematic reviewers.

at least 2 reviewers in the published author lists regarding eligibility
[21,28,31]. From EndNote, we exported each corpus as a text file in
MEDLINE format. We then created 3 text files for each citation:
(1) the full citation, including title, abstract, and metadata (FULL);
(2) the title and abstract (TIABS); and (3) the title (TITLE). We built
training and test sets for each type of text file by randomly assigning
files using a 2:1 split, respectively. To ensure comparability across
training and test sets, we used the same random assignment for
citation portions.

For the ameloblastoma review, the training set for each citation
portion consisted of 1209 files: exclude = 1133; include = 76 (6.3%).
The test set for each portion consisted of 606 files: exclude = 567;
include = 39 (6.4%). For the influenza review, the training set con-
sisted of 3679 files: exclude = 3469; include = 210 (5.7%); the test
set consisted of 1806 files: exclude = 1699; include = 107 (5.9%). The
citations labeled as include point to studies eligible for full text-
review, as well as being provisionally eligible for eventual inclusion
in the systematic review.

To extract features (processed words) and classify studies, we
used the open-source, data-mining suite RapidMiner v.4.6 [32,33]
with a text plugin [34]. We processed text to create weighted fea-
ture vectors that represent each citation portion. This involved
tokenizing (splitting up) strings of text, converting to lower case,
filtering out stopwords and tokens with length less than 3, Porter
stemming, and pruning out tokens that occurred in at most 3 cita-
tions. Features were weighted with TFIDF weights ([35], p.109),
which are the product of term frequencies (TF) and inverse doc-
ument frequencies (IDF). Note that for citations retrieved from
MEDLINE or EMBASE, the metadata include tags and indexing terms
from MeSH [36] or EMTREE [37], respectively. For this study, we
treated metadata as any other text without preserving the tags,
such as the MeSH tags TI for title or SO for source.

In general, we first trained a set of classifiers known to work
well with text [26,38] using processed features extracted from cita-

tions. Then we independently tested classifier models on a third
of the data reserved for this purpose. We compared performance
with respect to recall, precision, and a summary measure that over-
weights recall relative to precision. We chose to overweight recall
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ecause this is in keeping with the human goal of near-perfect
ecall when screening citations [12,25,39]. Human reviewers are
verly inclusive during this phase in order to reduce the risk of
verlooking relevant studies. This means that precision is sacri-
ced for recall. During their full-text review of studies identified
y screening citations, reviewers effectively improve precision by
liminating studies that do not meet their inclusion criteria. Thus,
or our purposes, we wanted to find classifiers with nearly perfect
ecall and precision good enough to reduce the number of citations
o screen.

We conducted this study in two phases. Phase I involved nei-
her optimization nor validation; phase II involved optimization
f features and classifier parameters with cross-validation. In both
hases, we conducted independent tests on the reserved data.

We defined best models as returning highest recall with preci-
ion good enough to reduce workload. Specifically, recall had to be
t least 95% and precision had to be greater than 7% and 6% for the
meloblastoma and influenza datasets, respectively. The rationale
or the cutoffs is as follows: when a model returns nearly perfect
ecall but poor precision, almost all of the eligible studies are iden-
ified along with many falsely identified ones. In the extreme, if
recision equals the percentage eligible, the returned set of studies

s as large as the entire set and no reduction in workload is possible.
hus, precision must surpass the percentage of studies identified
y humans as being eligible for full-text review. Note that when
ecall is 95%, the machine falsely excludes 5% of the eligible stud-
es. However, in comparing discrepant decisions, human(s) would
econsider the 5% they had identified but the machine had missed.

In our experiments, we compared the following classifiers: k-NN
26], NB [40], cNB [41], and evolutionary support vector machine
EvoSVM) [42]. NB and cNB are probabilistic learners; EvoSVM is
unctional; and k-NN is a lazy learner that classifies based on sim-
larity or distance measures. Further, NB assumes conditional and
ositional independence of features; thus, the immediate context
f features or processed words extracted from citations is ignored.
NB is suitable for imbalanced data and presumably more appro-
riate for this task because the percentage of eligible studies in
ystematic reviews is usually relatively small. Additionally, cNB
elaxes the particularly unrealistic assumptions of NB regarding
ndependence of features extracted from text written by humans.
voSVM uses a kernel function to find a nonlinear hyperplane that
aximally separates classes of documents. EvoSVM generalizes

upport vector machine classifiers and can optimize non-positive
emi-definite kernel functions [42].

We used RapidMiner default settings for classifier parameters
ith the following exceptions: For EvoSVM, we set C = 1 instead of
= 0 in phase I based on [42]. In phase II, we set C = 1, 10, or 20. The
arameter C is a regularization constant that sets an upper bound
or multipliers used in maximizing the margin between classes (cf.
hapter 15 in [35]). For k-NN, we used cosine similarity measures
nstead of mixed Euclidean distances.

For both phases, performance measures included recall, preci-
ion, and an overall performance measure (F3), which is a weighted
armonic mean ([35], p.144). The formula for F is:

= (beta2 + 1)Precision × Recall

beta2 × Precision + Recall
(1)

here beta is a non-negative number. Note that the notation F1 or
3 is short for Fbeta=1 or Fbeta=3, respectively. Thus, the formula for
3 is:

3 = (32 + 1)Precision × Recall
(2)
32 × Precision + Recall

We estimated F3 rather than the traditional measure F1 that
qually weights recall and precision. Although the relative weight-
ng is more obvious when beta is expressed in terms of alpha
lligence in Medicine 55 (2012) 197–207

(cf. [35], p. 144), the formulas presented are more common. In our
opinion, F1 is inappropriate for this task because it is not in keeping
with reviewer behavior during the screening phase.

2.1. Design of phase I (no optimization)

The design of phase I was: 4 classifiers × 3 citation portions × 3
feature sets. We used the ameloblastoma citations and did not opti-
mize features or classifier parameters.

Classifiers included k-NN, NB, cNB, and EvoSVM. In early anal-
yses, LibSVM with a radial or polynomial kernel either failed or
returned very poor performance. We therefore dropped LibSVM
from subsequent analyses.

Citation portions included TITLES, TIABS, and FULL citations.
Feature sets included unigrams or bag of single words (BOW),

and 2-term (2G) and 3-term n-grams (3G). n-Gram sets are hier-
archical and therefore consist of features from previous set(s). For
example, a 3G set consists of contiguous triples and pairs, as well
as single processed features, i.e., trigrams, bigrams, and unigrams.
We had competing reasons for comparing these feature sets. On the
one hand, 2G or 3G could add linguistic phrases that improve clas-
sification; on the other, BOW could reduce computational burden.

Varying feature sets and citation portions allowed compari-
son of their relative contribution to classification. We expected
that an n-gram feature set extracted from FULL citations would
improve classifier performance. We reasoned that 2G or 3G sets
would preserve some of the information in the indexing terms or
phrases found in the metadata of FULL citations and, therefore,
this feature-citation portion combination would be associated with
better performance.

2.2. Design of phase II (optimization with cross-validation)

In this phase, we used ameloblastoma and influenza citations.
We considered 3 classifiers, 2 feature sets, and 1 citation por-
tion. Classifiers included k-NN, cNB, and EvoSVM. Given the results
from phase I, we dropped NB and used BOW extracted from FULL
citations. We also developed a second feature set by adding 2G
title features to the BOW. This enrichment overweighted titles and
added contextual information residing in pairs of title words.

For each information gain (IG) threshold, we selected features
if the absolute value of the IG weight was ≥ to the threshold. We
manually set the IG threshold outside of a loop for grid opti-
mization of classifier parameters with an inner loop for 10-fold
cross-validations.

We used the RapidMiner operator Grid Parameter Optimization
to find the best parameter set per information threshold. This oper-
ator searches over a grid of parameter combinations to return an
optimal set. Given the nature of human screening behavior, we
searched for optimal sets yielding highest recall with precision
greater than the cutoff. The size of the grid is determined by the
levels of the parameters under consideration. For example, if one
combines 2 parameters with 3 possible values each, the search is
over a 3 × 3 grid with 9 cells. For each cell, an n-fold cross-validation
is run. In our experiments, the total number of runs (N) for each clas-
sifier equals the number of IG thresholds × the number of cells in
the grid × the number of folds in the cross-validations. For exam-
ple, N = 480 (k-NN), 540 (EvoSVM), and 600 (cNB), ameloblastoma
data.

We randomly selected partitions for the cross-validations and
stratified to ensure that the percentage of eligible studies was the
same across partitions. Further, we used the same random seed

to ensure that partitions were equivalent when comparing clas-
sifiers. For each fold in a 10-fold cross-validation, we trained a
classifier on 90% of the training data given a particular combination
of parameters in the optimization grid, and assessed performance



al Intelligence in Medicine 55 (2012) 197–207 201

o
f

a
a
1
w
t
.
i

d
s
p
s
s
m
w
g
e
n
w
g
2
f

u
b

b
k

b
i
d
w
b

p
m
e
t
t
e
p

3

3

e
c

E
F
e
(

c
a
r

fi

0

10

20

30

40

50

60

70

80

90

100

1-Nearest

Neighbor

ComplementNaïve Bayes

Naïve Bayes

EvoSVM

Classifier

R
e

c
a

ll
 (

%
)

BOW

2G

3G

0

10

20

30

40

50

60

70

80

90

100

1-Nearest

Neighbor

ComplementNaïve Bayes

Naïve Bayes

EvoSVM

Classifier
R

e
c

a
ll

 (
%

)

FULL

TIABS

TITLES

Fig. 2. Recall varied with classifier and feature set (top), as well as citation por-

between recall and precision. Two points surpassed both recall and
T. Bekhuis, D. Demner-Fushman / Artifici

n the remaining 10%. Because cross-validations are iterative, per-
ormance measures were means of 10 values.

To develop a reasonable series of IG thresholds, we inspected
plot of normalized IG weights for BOW extracted from FULL

meloblastoma citations. The absolute values ranged from 0.0 to
.0, with ameloblastoma having the largest weight; most values
ere less than 0.20. Thus, our series of threshold values included

he following: none (no feature selection), .0001, .04, .08, .12, and
16. Based on the ameloblastoma results, the thresholds for the
nfluenza data were none and 0.0001.

To ensure feasibility of the EvoSVM optimization runs, we con-
ucted scoping analyses to select appropriate parameter values. By
coping, we mean that we conducted grid optimization with sim-
le validation using a 1:1 split of the training set with no feature
election. However, for mutation types (Gaussian, switching, and
parsity) we followed the methods of phase I in addition to opti-
ization with simple validation. Given the guidance of [43,44],
e considered various values for C and gamma; the default for

amma = 1.0 was best. We also confirmed that the default value for
psilon = 0.1 was reasonable for our data. We chose a nonlinear ker-
el based on our pilot study [45]. Given these preliminary analyses,
e used the following settings: radial kernel; Gaussian mutation;

amma = 1.0; epsilon = 0.1; population size = 1, 10, 20; and C = 1, 10,
0. Thus, population size and C were the input parameter values
or the grid optimization in phase II.

For cNB, the input parameter values included smoothing val-
es = .001, .4, .6, .8, 1.0 and normalized class weights = false, true,
ased on [41].

For k-NN, the input parameter values included number of neigh-
ors k = 1, 3, 5, 7 and weighted vote = false, true. Note that when
= 1, vote is not relevant.

In addition to cross-validation, we independently validated the
est model for each classifier on a reserved test set. Note that the

ndependent tests are stricter than the tests on held-out partitions
uring cross-validation because data for the former are not used
hen training classifiers. Thus, the independent tests are probably

etter estimates of generalizability.
For phase II, we expected that optimization would improve

erformance for all classifiers. We further expected that after opti-
ization at least one classifier would return recall greater than or

qual to 95% with precision greater than 7% for the ameloblas-
oma data and greater than 6% for the influenza data. Based on
he results from phase I, we expected that enriching the feature set
xtracted from FULL citations with 2G title features would improve
erformance for cNB.

. Results

.1. Phase I (no optimization)

Table 1 displays the independent test results for phase I. In gen-
ral, there appears to be a complex interaction between classifier,
itation portion, and feature set.

Over 9 possible conditions (3 citation portions × 3 feature sets),
voSVM returned the best recall (82.05%) for BOW extracted from
ULL citations; 1-NN returned the best F3 (67.84%), also for BOW
xtracted from FULL citations. NB and cNB returned the worst recall
7.69%) and F3 (8.47%) for 2G and 3G extracted from FULL citations.

Over all conditions, recall was best for EvoSVM 5 of 9 times. Pre-
ision was maximal when recall was very low, e.g., precision = 100%

nd recall = 7.69% for NB, 2G, FULL. NB was the weakest classifier
egarding F3 (range 8.47–56.90%).

Fig. 2(top) displays the results for recall as a function of classi-
er and feature set when features were extracted from the FULL
tion (bottom). BOW = bag of words; 2G = 2-term n-grams; 3G = 3-term n-grams;
FULL = title, abstract, and metadata; TIABS = title and abstract; ameloblastoma data.

citation. Using BOW appears to improve recall for EvoSVM, 1-NN,
and cNB, but not for NB.

Fig. 2(bottom) displays the results for recall as a function of clas-
sifier and citation portion when the feature set was BOW. Metadata
in the FULL citation appear to improve recall for EvoSVM and 1-NN,
but not for NB and cNB (consider that the difference between FULL
and TIABS is the metadata in FULL). However, extracting BOW from
TITLES was associated with best recall for cNB and NB, and was
second to FULL citations for EvoSVM.

No classifier reached the recall criterion of at least 95% for
acceptable performance.

3.2. Phase II (optimization with cross-validation)

Based on phase I results, we dropped NB from further consid-
eration. We optimized features and parameters with respect to
recall and cross-validated models for k-NN, cNB, and EvoSVM using
BOW extracted from FULL citations. We also cross-validated opti-
mized models on enriched feature sets (BOW plus 2G title features).
All independent tests applied the best training models from the
grid optimizations with cross-validations to the reserved data. The
best feature-parameter combinations per classifier were the same
across ameloblastoma and influenza datasets.

Tables 2–4 display the results for optimization with cross-
validation; recall and precision are in bold for models that
surpassed both cutoffs. Table 5 displays the independent test
results.

Fig. 3 displays mean recall and precision as a function of IG
threshold for the ameloblastoma data. The curves for both cNB
and EvoSVM were inversely related, which is typical of the tradeoff
precision criteria: when the IG threshold = none for cNB and 0.0001
for EvoSVM. For k-NN, the curves were similar, but diverged for the
largest IG threshold. Although k-NN always surpassed the precision
cutoff, it never met the recall criterion.
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Table 1
Independent test results by classifier, feature type, and citation portion: ameloblastoma data.a

BOW/FULL BOW/TIABS BOW/TITLES

Recall
(%)

Precision
(%)

F3
(%)

Recall
(%)

Precision
(%)

F3
(%)

Recall
(%)

Precision
(%)

F3
(%)

1-NN 69.23 57.45 67.84 64.10 60.98 63.77 46.15 45.00 46.03
NB 10.26 80.00 11.24 15.38 54.55 16.57 56.41 37.93 53.79
cNB 25.64 76.92 27.47 35.90 63.64 37.54 66.67 22.22 55.56
EvoSVM 82.05 20.51 63.11 64.10 18.66 51.55 71.79 18.30 55.55

2G/FULL 2G/TIABS 2G/TITLES

Recall
(%)

Precision
(%)

F3
(%)

Recall
(%)

Precision
(%)

F3
(%)

Recall
(%)

Precision
(%)

F3
(%)

1-NN 61.54 60.00 61.38 64.10 58.14 63.45 35.90 35.90 35.90
NB 7.69 100.00 8.47 10.26 100.00 11.27 38.46 39.47 38.56
cNB 10.26 100.00 11.27 17.95 87.50 19.50 69.23 30.68 61.50
EvoSVM 66.67 40.00 62.50 51.28 46.51 50.79 64.10 25.00 55.43

3G/FULL 3G/TIABS 3G/TITLES

Recall
(%)

Precision
(%)

F3
(%)

Recall
(%)

Precision
(%)

F3
(%)

Recall
(%)

Precision
(%)

F3
(%)

1-NN 61.54 63.16 61.70 64.10 62.50 63.94 28.21 28.95 28.28
NB 17.95 100.00 19.55 12.82 100.00 14.04 66.67 24.53 56.90
cNB 7.69 100.00 8.47 15.38 100.00 16.80 53.85 28.00 49.30
EvoSVM 64.10 48.08 62.03 48.72 55.88 49.35 69.23 19.29 54.99

a BOW = bag of words; 2G = 2-term n-grams; 3G = 3-term n-grams; FULL = title, abstract, metadata; TIABS = title, abstract; 1-NN = 1 nearest neighbor; NB = naïve Bayes;
cNB = complement naïve Bayes; EvoSVM = evolutionary support vector machine.

Table 2
Classifier performance after grid optimization with 10-fold cross-validation: ameloblastoma data.a

IG thresholdb Best parameter set MN recall (SD) % MN precision (SD) % MN F3 (SD) %

EvoSVMc

None C = 20, pop size = 10 89.46 (11.05) 14.01 (2.64) 58.15 (10.20)
0.0001 C = 1, pop size = 10 100.00 (0.00) 13.11 (1.37) 60.14 (5.58)
0.04 C = 1, pop size = 10 87.14 (9.71) 22.31 (5.90) 67.52 (14.52)
0.08 C = 10, pop size = 10 80.54 (14.03) 22.50 (6.16) 64.02 (14.65)
0.12 C = 10, pop size = 10 79.11 (15.53) 29.24 (6.51) 67.58 (13.77)
0.16 C = 10, pop size = 10 79.11 (15.53) 36.51 (7.87) 70.84 (13.27)

cNBd

None Smoothing value = .001, normalized = true 97.32 (5.37) 8.72 (0.86) 48.27 (4.53)
0.0001 Smoothing value = .4, normalized = false 74.82 (16.74) 39.54 (9.56) 68.69 (15.36)
0.04 Smoothing value = .4, normalized = false 88.21 (10.93) 33.79 (6.23) 75.97 (11.50)
0.08 Smoothing value = .001, normalized = false 80.36 (12.29) 32.50 (7.97) 70.04 (14.29)
0.12 Smoothing value = .6, normalized = false 80.36 (15.65) 24.72 (5.04) 65.60 (12.38)
0.16 Smoothing value = .001, normalized = true 71.25 (12.31) 38.98 (12.18) 65.80 (15.16)

k-NNe

None k = 1 52.78 (12.35) 52.02 (11.69) 52.70 (7.04)
0.0001 k = 1 32.86 (11.82) 47.30 (23.35) 33.90 (11.87)
0.04 k = 1 31.07 (15.45) 41.05 (16.66) 31.84 (13.30)
0.08 k = 1 38.04 (15.61) 47.99 (23.03) 38.84 (14.99)
0.12 k = 1 47.32 (13.95) 58.33 (13.59) 48.23 (10.44)
0.16 k = 5, weighted vote = true 44.64 (13.74) 12.15 (3.39) 35.22 (9.85)

a Bag of words extracted from full citations.
b IG = information gain; feature set size varies inversely with IG threshold.
c EvoSVM = evolutionary support vector machine; radial kernel; Gaussian mutation; gamma = 1.0; epsilon = 0.1; C = 1, 10, 20; population size = 1, 10, 20.
d cNB = complement naïve Bayes; smoothing values = .001, .4, .6, .8, 1.0; normalized class weights = true, false.
e k-NN = k-nearest neighbor; k = 1, 3, 5, 7 neighbors; weighted vote = true, false, n/a when k = 1; cosine similarity measures.

Table 3
Classifier performance after 10-fold cross-validation: enriched feature set, ameloblastoma data.a

IG thresholdb Best parameter set MN recall (SD) % MN precision (SD) % MN F3 (SD) %

EvoSVMc

0.0001 C = 1, pop size = 10 100.00 (0.00) 14.41 (1.87) 62.74 (7.01)
cNBd

None Smoothing value = .001, normalized = true 100.00 (0.00) 10.96 (1.21) 55.18 (5.51)
k-NNe

None k = 1 41.79 (18.04) 49.69 (20.78) 42.46 (15.99)

a Bag of words extracted from full citations plus overweighted titles.
b IG = information gain; number of features = 1677 when IG ≥ 0.0001; 4607 features when IG threshold = none.
c EvoSVM = evolutionary support vector machine; radial kernel; Gaussian mutation; gamma = 1.0; epsilon = 0.1; C = 1, 10, 20; population size = 1, 10, 20.
d cNB = complement naïve Bayes; smoothing values = .001, .4, .6, .8, 1.0; normalized class weights = true, false.
e k-NN = k-nearest neighbor; k = 1, 3, 5, 7 neighbors; weighted vote = true, false, n/a when k = 1; cosine similarity measures.
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Table 4
Classifier performance after optimization and validation: influenza data.

IG thresholdb N features Best parameter set MN recall (SD) % MN precision (SD) % MN F3 (SD) %

Grid optimization with 10-fold cross-validationa

EvoSVMc

None 6828 C = 20, pop size = 20 74.72 (10.37) 7.72 (1.00) 40.00 (5.17)
0.0001 2205 C = 1, pop size = 10 100.00 (0.00) 10.69 (0.65) 54.48 (3.02)

cNBd

None 6828 Smoothing value = .001, normalized = true 97.64 (3.12) 7.14 (0.24) 43.06 (1.42)
0.0001 2205 Smoothing value = .4, normalized = false 69.56 (8.71) 41.02 (7.09) 65.04 (8.80)

k-NNe

None 6828 k = 1 36.70 (10.51) 34.82 (9.42) 36.50 (9.79)
0.0001 2205 k = 1 24.79 (7.38) 36.73 (13.59) 25.62 (7.64)

10-Fold cross-validation: enriched feature setf

EvoSVM
0.0001 2913 C = 1, pop size = 10 100.00 (0.00) 10.74 (0.59) 54.61 (2.73)

cNB
None 9752 Smoothing value = .001, normalized = true 99.52 (1.43) 7.48 (0.27) 44.62 (1.51)

k-NN
None 9752 k = 1 36.73 (13.92) 31.86 (9.09) 36.18 (11.35)

a Bag of words extracted from full citations.
b IG = information gain.
c EvoSVM = evolutionary support vector machine; radial kernel; Gaussian mutation; gamma = 1.0; epsilon = 0.1; C = 1, 10, 20; population size = 1, 10, 20.
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d cNB = complement naïve Bayes; smoothing values = .001, .4, .6, .8, 1.0; normaliz
e k-NN = k-nearest neighbor; k = 1, 3, 5, 7 neighbors; weighted vote = true, false, n
f Bag of words extracted from full citations plus overweighted titles.

.2.1. EvoSVM
The best model for EvoSVM over all IG thresholds involved a

ubset of features for which the IG weight was ≥0.0001; n = 1430
40%) and n = 2205 (32%) features, ameloblastoma and influenza
ata, respectively. The best parameter set was C = 1 and population
ize = 10 (see Tables 2 and 4).
For the independent tests with ameloblastoma data, recall
as stable when compared to the best optimization results,

.e., recall = 100% for both BOW and enriched BOW (see

able 5
ndependent test results by classifier for influenza and ameloblastoma data.a

Evolutionary
support vector
machine

Recall (%)
Full citationb

Influenza 79.44
Ameloblastoma 100.00

Full citation + weighted titlesc

Influenza 90.65
Ameloblastoma 100.00

Mean rankd,e 2.5
Precision (%)

Full citation
Influenza 8.20
Ameloblastoma 13.09

Full citation + weighted titles
Influenza 8.90
Ameloblastoma 13.40

Mean ranke 2.0
F3 (%)

Full citation
Influenza 42.51
Ameloblastoma 60.10

Full citation + weighted titles
Influenza 47.25
Ameloblastoma 60.74

Mean rankf 2.5

a Using best training models after optimization and validation (see Tables 2–4).
b Bag of words extracted from full citations.
c Bag of words extracted from full citations plus overweighted titles.
d Higher ranks associated with better performance.
e Mean ranks significantly different for recall and precision: Friedman chi2 (2 df) = 6, P =
f Mean ranks not significantly different for F3: Friedman chi2 (2 df) = 1.5, P = .4724.
ss weights = true, false.
en k = 1; cosine similarity measures.

Tables 2, 3 and 5). However, with influenza data, recall degraded
from 100% to 79.44% and 90.65% for BOW and the enriched BOW,
respectively (see Tables 4 and 5). Enrichment boosted precision
2.4% (13.40% vs. 13.09%, ameloblastoma) and 8.5% (8.90% vs. 8.20%,
influenza) (see Table 5). We computed the percentage improve-
ment as [(.0890 − .0820)/.0820] × 100 = 8.5%. EvoSVM surpassed

both recall and precision thresholds for the ameloblastoma data,
and the precision threshold for influenza data. However, it failed
with respect to recall for the influenza data.

Complement
naïve Bayes

k-
Nearest
neigh-
bor

97.20 29.91
97.44 69.23

98.13 25.23
94.87 58.97

2.5 1.0

7.30 30.48
9.22 57.45

7.58 25.47
10.95 60.53

1.0 3.0

43.56 29.97
49.80 67.84

44.71 25.25
53.71 59.12

1.8 1.8

.0498 and Friedman chi2 (2 df) = 8, P = .0183, respectively.
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Fig. 3. Mean recall and precision varied by information gain (IG) threshold. Com-
plement naïve Bayes (cNB) and evolutionary support vector machine (EvoSVM)
s
t
t

m
8
B

3

i
t
s
T

c
i
1
7
p
a
t
(

urpassed both recall and precision cutoffs when all features were selected or when
he IG weight was ≥0.0001 (top). For k-nearest neighbor (k-NN), no points surpassed
he recall cutoff (bottom).

Compared to the results from phase I, recall for the optimized
odel on the ameloblastoma test set was 21.9% better (100% vs.

2.05%) and F3 was 3.8% worse (60.74% vs. 63.11%) (see Table 1,
OW/FULL and Table 5).

.2.2. cNB
The best optimized model for cNB over all IG thresholds

nvolved the full set of features: n = 3574 and n = 6828, ameloblas-
oma and influenza data, respectively. The best parameter set was
moothing value = .001 and normalized weights for each class (see
ables 2 and 4).

For the independent tests, recall was relatively stable when
ompared to the best optimization results (ameloblastoma and
nfluenza data) (see Tables 2–5). Enrichment boosted precision
8.8% (10.95% vs. 9.22%, ameloblastoma) and 3.8% (7.58% vs.
.30%, influenza) (see Table 5). cNB surpassed both recall and

recision thresholds with influenza data (both feature sets) and
meloblastoma data (BOW). However, it just missed the recall
hreshold of 95% with ameloblastoma data and the enriched BOW
recall = 94.87%).
lligence in Medicine 55 (2012) 197–207

Compared to the results from phase I, recall for the optimized
model on the ameloblastoma test set was 2.8 times better (97.44%
vs. 25.64%); F3 was 81.3% better (49.80% vs. 27.47%) (see Table 1,
BOW, FULL and Table 5).

3.2.3. k-NN
The best optimized model for k-NN over all IG thresholds was

based on the full set of features. The best parameter setting was
k = 1, vote not applicable (see Tables 2 and 4).

The results for the independent tests were quite mixed. For
example, recall improved when compared to the best optimization
results for the ameloblastoma data, but degraded for the influenza
data (see Tables 2, 4 and 5). Enrichment boosted precision for the
ameloblastoma data, but degraded precision for the influenza data
(see Table 5). k-NN failed to meet the recall threshold for both
datasets regardless of feature set, whereas it always surpassed the
precision threshold.

For the ameloblastoma data, the results of the independent test
for BOW extracted from FULL citations were the same as in phase
I (see Table 1, BOW/FULL and Table 5). This is because the models
were the same.

3.2.4. Comparison of classifiers
Following the advice of Demsar [46], we computed an omnibus

Friedman test statistic to assess differences among mean ranks for
3 classifiers per performance measure (see Table 5). The Friedman
test is a robust, nonparametric alternative to repeated measures
ANOVA. When the Friedman test statistic was statistically signif-
icant (P < .05), we computed Bonferroni-Dunn tests for post hoc
comparisons; we adjusted alpha for the number of comparisons to
control the Type I error rate. Note that higher ranks are associated
with better performance.

Mean ranks for recall were significantly different: 2.5 (EvoSVM),
2.5 (cNB), and 1.0 (k-NN); Friedman chi2 (2 df) = 6, P = .0498.
Because the post hoc comparison for EvoSVM vs. k-NN was the
same as for cNB vs. k-NN – 2.5 vs. 1.0 – alpha was not adjusted.
For EvoSVM or cNB vs. k-NN, mean recall was significantly dif-
ferent: z = 2.12, P = .034. Thus, recall was not significantly different
for EvoSVM vs. cNB, but was when each was compared to k-NN.
Recall was always better for EvoSVM or cNB vs. k-NN. Overall, recall
usually improved or was stable when features were enriched by
overweighting titles for EvoSVM and cNB, but not for k-NN.

The mean ranks for precision were significantly different:
2.0 (EvoSVM), 1.0 (cNB), and 3.0 (k-NN); Friedman chi2 (2
df) = 8, P = .0183. Because 3 post hoc comparisons were computed,
the adjusted alpha = .05/3 = .0167. For EvoSVM vs. cNB: z = 1.41,
P = .1585. For EvoSVM vs. k-NN, z = −1.41, P = .1585. For cNB vs.
k-NN: z = −2.83, P = .0047. Thus, precision was not significantly dif-
ferent for EvoSVM vs. cNB or EvoSVM vs. k-NN, but was for cNB vs.
k-NN. Precision was always better for k-NN when compared to cNB.
In general, precision improved for EvoSVM and cNB when features
were enriched by overweighting titles, whereas results for k-NN
were mixed.

The mean ranks for F3 were not significantly different: 2.5
(EvoSVM), 1.8 (cNB), and 1.8 (k-NN); Friedman chi2 (2 df) = 1.5,
P = .4724. Because the omnibus test was not statistically significant,
post hoc comparisons were not warranted.

4. Discussion

4.1. Implications
To understand the implications of this research, consider the
following scenario. Assume that (1) a reliable machine learning sys-
tem exists to assist systematic reviewers when screening citations;
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2) 3000 citations have been retrieved; (3) human reviewer(s) com-
lete the first pass through the entire set of citations and label 180
6%) as eligible for full-text review; and (4) two machine learning
lassifiers are available (EvoSVM and cNB). Given sampling vari-
bility, our best estimates for recall and precision are the averages
or the independent test results on the enriched feature sets. Thus,
urther assume that recall and precision are 95.32% and 11.15% for
voSVM, and 96.50% and 9.27% for cNB (based on Table 5).

The questions of concern to potential users are: how many cita-
ions will each machine learning classifier identify as eligible and
ow does this compare to screening the entire set once again? If
he system is useful, reviewers need not consider further the dis-
roportionately large number of citations labeled as ineligible both
y human(s) and machine.

If the reviewers choose EvoSVM, the classifier correctly labels
72 citations and incorrectly labels another 1443 as eligible. Thus,
noisy set of 1615 true and false positives (172 + 1443 = 1615) is

eturned for the second pass through the citations by at least one
ore human reviewer – we refer to the size of this set as the num-

er needed to screen (NNS). However, the NNS should be adjusted
omewhat by the 8 citations overlooked by the machine, but iden-
ified by human(s). This is because recall is not perfect. Thus, the
NS for EvoSVM is 1615 + 8 = 1623, which is a 46% reduction in the

ize of the initial retrieval set: (3000 − 1623)/3000 = .459.
If the reviewers choose cNB, the classifier correctly labels 174

itations and incorrectly labels another 1768 as eligible. A set of
942 true and false positives is returned. Adding in the 6 cita-
ions overlooked by the machine, the NNS is 1948, which is a 35%
eduction in the size of the initial retrieval set.

Clearly, if a reliable system were in place and both classi-
ers were reasonably efficient, systematic reviewers would choose
voSVM in favor of cNB because the NNS = 1623 for EvoSVM and
948 for cNB. Nevertheless, until we have more citations from SRs
n topics where NR studies are likely, our estimates for recall and
recision may be unrealistic.

A major challenge for future research is boosting precision to
educe further the screening burden while maintaining very high
ecall. More than likely, we need feature sets that capitalize on
oth the structure of citations and the language that scientists and

ndexers use to describe studies. Regarding the latter, review teams
utside of the United States are likely to search EMBASE, which is
he European counterpart of MEDLINE. However, indexers use dif-
erent terms for the same concepts, and MeSH and EMTREE terms
an appear in different places in the citation. Thus, modeling struc-
ure is a challenge if we want to extract indexing terms and tag
or source. In this paper, we demonstrated that adding contextual
nformation from pairs of title words tends to boost precision mod-
stly – suggesting that we can do a better job of modeling the format
nd scientific language of biomedical citations.

.2. Classifier performance

The results were somewhat surprising. For phase I, we had
xpected that without optimization, recall and overall performance
ould be best using 2- or 3-term n-grams extracted from com-
lete citations. Instead, using single processed words (BOW) from
ULL citations was associated with best performance. This suggests
hat indexing in the complete citation improves performance, even
hen the indexing terms are processed as single words. To improve

his feature set in future work, we could preserve the MeSH and
MTREE terms (phrases), which would yield a feature set similar to
he one used by Cohen and colleagues [23,47].
Because none of the classifiers from phase I attained high enough
ecall to be of use, optimization in phase II was warranted.

For phase II, we had expected that all classifiers would benefit
rom optimization. This was generally true for EvoSVM and cNB,
lligence in Medicine 55 (2012) 197–207 205

but not for k-NN. As it turned out, the optimized model for k-NN
was the same as the one we used during phase I. Additionally, just
EvoSVM benefited from selecting features based on IG. The results
did support our expectation that, with optimization, one or more
classifiers would return recall at least as high as 95% and precision
greater than 6% or 7%, depending on the dataset. Both EvoSVM and
cNB met these criteria, but generalization performance for EvoSVM
was not as good as for cNB. This suggests either sampling vari-
ability or overfitting of EvoSVM during training. If the latter, the
parameter C may not have been tuned well because C purportedly
controls overfitting ([35], p. 301). Additionally, a radial kernel may
have been inappropriate (see below).

Additionally, we had expected that enriching the BOW from full
citations by overweighting titles would improve performance for
cNB. It was somewhat surprising that enrichment improved per-
formance for both cNB and EvoSVM.

Although researchers currently favor variants of both of these
classifiers [22–25], the evidence suggests that optimization is nec-
essary to boost performance. In fact, the results for cNB were
startling with an almost three-fold improvement for recall and an
81% improvement for overall performance when comparing phase
I and phase II results for ameloblastoma data.

4.3. Limitations

The major limitation of this study is that the citations came
from just two systematic reviews. Future comparative studies of
classifiers should use citations from several reviews, paying atten-
tion to phrases for NR study designs that meet inclusion criteria as
specified in the protocols. Presumably, more precise classification
is possible for randomized controlled trials because the index-
ing is better than for NR studies (see the Introduction here and
in [45]).

Another limitation is that we wrapped feature selection around
grid optimization of classifier parameters, ignoring the class imbal-
ance problem [48]. While using a wrapper strategy is a well-known
approach [49], a better one could involve selecting features within
the positive (include) and negative (exclude) classes before grid
optimization (e.g., see [49,50]). Recently, Le and colleagues [51]
compared other optimization methods, including stochastic gradi-
ent descent (SGD), limited memory BFGS (L-BFGS), and conjugate
gradient (CG) methods. They reported that in contrast to the
favored SGD method, L-BFGS and CG methods outperform SGD with
respect to speed and accuracy. However, their overall conclusion
was that performance of the optimization method varies with the
research problem.

Certainly, a more thorough comparison of parameter settings
for EvoSVM is required as this classifier has quite a few parame-
ters. In particular, a study comparing performance as a function
of kernel is essential in the context of classifying biomedical cita-
tions. Because generalization performance is “dominated by the
chosen kernel function” ([52], p. 1313), researchers are develop-
ing automatic methods for learning kernel functions. A promising
nonparametric approach was described in [52], wherein a family
of simple nonparametric kernel learning (NPKL) algorithms was
presented. Simple NPKL algorithms are reportedly as accurate as
other NPKL methods, but more efficient and scalable. This line
of research is timely inasmuch as parametric SVMs do not scale
well for many applications, selection of the appropriate kernel is
not obvious, and parametric kernels may be inappropriate for this
task.

Although the results from our study and [45] suggest that

EvoSVM with a nonlinear kernel is promising, the runtimes are
much longer than for cNB. In the near term, cNB may be the bet-
ter choice to semi-automate citation screening, especially when
the number of citations is large. Finally, in our opinion, conditional
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andom fields [53] and latent Dirichlet allocation [54] might prof-
tably be compared to variants of cNB and SVM.

. Conclusion

We have demonstrated that machine learning classifiers can
elp identify NR studies eligible for full-text screening by sys-
ematic reviewers. We have further shown that optimization can

arkedly improve classifier performance. In our opinion, careful
omparative research is needed before a classifier is chosen to semi-
utomate screening citations. Further, stability of performance for
ptimized classifiers needs to be demonstrated over various med-
cal review topics.
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