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Abstract 

Systematic review authors synthesize research to guide 

clinicians in their practice of evidence-based medicine. 

Teammates independently identify provisionally eligible studies 

by reading the same set of hundreds and sometimes thousands 

of citations during an initial screening phase. We investigated 

whether supervised machine learning methods can potentially 

reduce their workload. We also extended earlier research by 

including observational studies of a rare condition. To build 

training and test sets, we used annotated citations from a 

search conducted for an in-progress Cochrane systematic 

review. We extracted features from titles, abstracts, and 

metadata, then trained, optimized, and tested several classifiers 

with respect to mean performance based on 10-fold cross-

validations. In the training condition, the evolutionary support 

vector machine (EvoSVM) with an Epanechnikov or radial 

kernel is the best classifier: mean recall=100%; mean 

precision=48% and 41%, respectively. In the test condition, 

EvoSVM performance degrades: mean recall=77%, mean 

precision ranges from 26% to 37%. Because near-perfect 

recall is essential in this context, we conclude that supervised 

machine learning methods may be useful for reducing 

workload under certain conditions.  

Keywords: 

Artificial intelligence; machine learning; review literature as 

topic; review, systematic; study characteristics [publication 

type]; Cochrane Oral Health Group  

Introduction 

We conducted this study to demonstrate that supervised 

machine learning methods can potentially reduce the workload 

of systematic reviewers during the initial screening phase of 

citations. In this phase, teammates independently identify 

provisionally eligible studies by reading the same set of 

hundreds and sometimes thousands of titles and abstracts 

(TIABS). This bottleneck slows the production of quality 

systematic reviews meant to synthesize research to guide 

clinicians in their practice of evidence-based medicine. 

Additionally, we extended the work of Aphinyanophongs et al. 

[1], Cohen et al. [2], and Kilicoglu et al. [3] who sought to find 

rigorous clinical research using supervised machine learning 

methods. Based on the work of Haynes and colleagues (e.g., 

see [4]), rigor was presumed if trials comparing treatments 

were randomized and controlled.  

To classify studies with respect to rigor or quality, each 

research group constructed a reference collection or ‘gold 

standard’ of positive cases. Aphinyaphongs and colleagues [1] 

used MEDLINE records for articles abstracted by the ACP 

Journal Club, which is a respected meta-journal that abstracts 

or cites evidence-based research in internal medicine for 

clinicians. Cohen et al. [2] used citations for randomized 

controlled trials (RCTs) included in 15 systematic reviews of 

drug therapies conducted by an Evidence-based Practice Center 

(EPC) funded by the US Agency for Healthcare Research and 

Quality. (The EPC files are publicly available at 

http://medir.ohsu.edu/~cohenaa/ systematic-drug-class-review-

data.html.) Kilicoglu et al. [3] used a large subset of manually 

annotated citations for documents that were used to develop the 

clinical query filters in PubMed [4]. They selected rigorous 

studies relevant to human healthcare with a treatment or 

prevention focus as a gold standard.  

Because randomized and quasi-randomized controlled trials 

(RCTs) tend to be less biased relative to nonrandomized and 

observational studies, review authors prefer to include RCTs 

and quasi-RCTs in their systematic reviews. However, it is 

sometimes necessary to include studies with weaker designs 

when RCTs are unlikely or unethical. For example, 

nonrandomized and observational studies are common for 

studies of: exposure to environmental hazards; invasive surgery 

compared to no surgery; risk factors for patients with chronic 

conditions; outcomes associated with patient-selected devices 

or over-the-counter drugs; diagnostic accuracy; and rare 

disorders. Thus, to meet the need for synthesized evidence for 

these kinds of questions, classification methods for studies with 

weaker designs should be developed along with those for 

RCTs.  

The challenges are significant. Consider, for example, that 

abstracts with potentially informative words and phrases 

regarding trial or study design were unavailable in MEDLINE 

for most articles published before 1976. Moreover, few terms 
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for designs were available in the MeSH Thesaurus before the 

1990s [5 (p. 131)]. Since then, terms have been added or 

modified to index designs, including weaker ones. For 

example, the term ‘study characteristics [publication type]’ 

includes narrower terms for ‘case reports,’ ‘comparative 

study,’ and ‘evaluation studies.’ Nevertheless, according to the 

Cochrane Non-Randomised Studies Methods Group, (1) 

authors of primary studies inconsistently describe the designs 

of their studies; (2) bibliographic databases do not reliably 

index designs; and (3) good filters for nonrandomized or 

observational studies do not yet exist [6]. In fact, when the 

latter are eligible for inclusion in a review, authors are enjoined 

to not include design terms in their search filters unless the 

retrieval set is so large that the review becomes impractical. 

Thus, the initial screening phase is typically labor intensive 

when both randomized trials and nonrandomized studies are 

eligible. 

Methods 

We used a recently approved search strategy for a Cochrane 

systematic review about ameloblastomas, which are rare 

odontogenic tumors of the jaws [7]. This strategy combines a 

topic filter with the Cochrane highly sensitive filter for 

identifying randomized controlled trials (see Box 6.4.c in [5]), 

and a modified SIGN filter for observational studies [8]. 

(Without terms for designs, the size of the initial retrieval set 

would have forestalled the review.) The combined filter is 

designed to find studies that compare surgical resection to any 

other treatment of ameloblastomas. The editors of the 

Cochrane Oral Health Group acknowledged the probable low 

incidence of ameloblastomas and therefore approved inclusion 

of case-control and patient registry studies. Because the 

primary outcome is recurrence of the tumor, Bekhuis and 

colleagues modified the SIGN filter by excluding cross-

sectional studies and by including terms for registry studies [7].  

The Cochrane Oral Health Group Trials Search Coordinator 

conducted the search, which yielded 1774 citations from four 

databases: MEDLINE, EMBASE, the Cochrane Central 

Register of Controlled Trials (CENTRAL), and the Cochrane 

Oral Health Group Trials Register. We also retrieved 41 

citations from two systematic reviews [9, 10]. After de-

duplication, the total number of citations was 1814. We sorted 

the corpus by publication date in descending order. Even 

though indexing may be inadequate with respect to design, the 

sorting reflects our belief that observational studies published 

after 2007 may be better described in titles and abstracts. This 

is partly because of the increasing adoption of the STROBE 

statement for reporting observational studies [11] by 

biomedical journals, including Annals of Internal Medicine, 

Lancet, and PLoS, among others. (See a list of journals at 

http://www.strobe-statement.org.) In the STROBE checklist, 

one of several recommendations for writing a good report 

states that authors should “indicate the study’s design with a 

commonly used term in the title or the abstract.” The checklist 

is available at http://www.strobe-statement.org/index.php?id= 

checklists. 

We built training and test sets by selecting the most recent 

citations from the initial retrieval set and then proportionately 

distributed citations from the systematic reviews. Citations in 

the test set (n=100) and training set (n=300) were labeled with 

respect to eligibility status in accordance with the consensus 

decisions of the Cochrane review team [7]. Thus, citations 

pointing to provisionally eligible studies were labeled as 

‘include’ and those pointing to ineligible studies as ‘exclude.’ 

Thirteen percent of studies were provisionally eligible in both 

the training and test sets.  

We used EndNote to manage citations, to record eligibility 

decisions of the review team, and to export a text file of 400 

citations which was then ‘chunked’ into separate files (one per 

citation) using Perl. We used RapidMiner [12], a software 

package for machine learning and data mining, to which we 

added a plug-in to process text (available at 

http://wvtool.sourceforge.net). 

Features were extracted from TIABS and metadata using a 

bag-of-words approach. Pre-processing text involved string 

tokenizing, converting to lower case, filtering out Medline [13] 

or English stop words, filtering out tokens with length less than 

3, and Porter stemming. Feature vectors were weighted with 

term frequencies (TF) or the product of TF and inverse 

document frequencies (TFIDF); vectors were pruned of terms 

that occurred in at most 3 citations. Features were selected for 

information gain. 

Broadly, we followed the following steps: (1) We trained 

several classifiers using  processed feature sets; (2) compared 

mean performance of classifiers based on 10-fold cross-

validations, where performance measures were mean recall, 

mean precision, and the harmonic mean of equally-weighted 

precision and recall (F1); (3) used grid optimization to find the 

kernel type that minimized absolute error for the evolutionary 

support vector machine (EvoSVM) classifier [14]; (4) 

investigated the impact of training set size on performance; and 

(5) compared the performance of EvoSVM configurations on  

the held-out test set.  

Results 

In early analyses, naïve Bayes and support vector machines 

(SVMs)—distinct from EvoSVMs—failed as classifiers, even 

though many researchers have used these algorithms to 

successfully classify documents [15].  Instead, we compared 

the following RapidMiner classifiers: DecisionTree, EvoSVM, 

and weightily averaged one-dependence estimator (WAODE) 

[16], focusing on EvoSVM in later analyses. To train the 

WAODE classifier, we first discretized features using the 

https://mail.nih.gov/owa/redir.aspx?C=70f4bd388fdd4d74a9a88cbc0b9964b1&URL=http%3a%2f%2fwww.strobe-statement.org
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minimal entropy partitioning operator. Selected training results 

are presented in Table 1.  

Analyses not presented compared the performance of each 

classifier by varying the weights (TF vs TFIDF) for the feature 

vectors. With the exception of the DecisionTree classifier, 

performance was better when using TFIDF weights. English 

stop words instead of MEDLINE stop words were used when 

pre-processing text for all classifiers because recall was higher 

when using the former in early analyses. 

Table 1–Mean training performance of selected classifiers over 

10-fold cross-validations 

 
Performance  

 

Classifier 

Mean  

Recall  

(%) 

Mean 

Precision 

 (%) 

F1 

 

DecisionTree 

(TF) 
   

MEDLINE 

Stop words 
25.83 42.83 0.305 

English 

Stop words 
30.83 45.83 0.355 

EvoSVM 

(TFIDF) 
   

Radial 100.00 41.47 0.578 

Polynomial 

Degree 3 
66.67 72.83 0.660 

Polynomial 

Degree 4 
65.83 73.50 0.676 

Epanechnikov 

Degree 3 
95.00 60.20 0.714 

Epanechnikov 

Degree 4 
100.00 48.29 0.648 

WAODE 

(TFIDF) 
65.83 72.33 0.677 

In the training condition, recall is perfect for the EvoSVM 

classifier with a radial or Epanechnikov (degree 4) kernel, 

although precision is modest. F1 is highest for the EvoSVM 

classifier with an Epanechnikov (degree 3) kernel (see Table 

1). 

Four EvoSVM kernel types (radial, Epanechnikov, Gaussian-

combination, and multiquadric) were compared using a grid 

parameter optimization algorithm with 3 iterations over 10-fold 

cross-validations. The EvoSVM classifier with a radial kernel 

outperforms other configurations when considering absolute 

error, mean recall, and mean precision (see Table 2).  

Table 2–Grid parameter optimization of EvoSVM kernel type 

(Complexity=1; sigma 1=10; TFIDF) 

 Performance 

EvoSVM 

Kernel 

Absolute 

Error 

Mean 

Recall 

(%) 

Mean 

Precision 

(%) 

Radial 0.253 92.3 75.0 

Epanechnikov 0.265 90.4 72.2 

Gaussian-

Combination 
0.535 28.8 39.5 

Multiquadric 0.393 50.0 43.3 

 

When we trained the EvoSVM classifier with an Epanechnikov 

kernel (degree 4) on 150 citations instead of 300, mean recall 

degraded considerably, but precision and F1 improved: mean 

recall=70.00%, mean precision=76.47% and F1=0.72.  

To understand the impact of training set size, we compared the 

corresponding feature set size for ntrain=300, 250, 200, 150, and 

100 (see Figure 1). We used stratified sampling to preserve the 

proportion of provisionally eligible studies in each sample. 

 

 

Figure 1–Feature set size is related to the number of citations 

in the training set. 

We further investigated the relationship between performance 

of the EvoSVM classifier (Epanechnikov kernel, c=1, 

sigma1=10, TFIDF) and training set size. Training sets were 

again stratified. Mean recall degrades as the size of the training 

set decreases, dropping markedly when ntrain =100; precision 

peaks when ntrain =200 (see Figure 2).  



 

Figure 2–Performance of the EvoSVM classifier is related to 

the number of citations in the training set. 

When we tested the EvoSVM classifier on the held-out test set 

of citations, performance degraded. Mean recall is equivalent 

for three configurations (77%), mean precision ranges from 

26% to 37%, and F1 from 0.39 to 0.50 (see Table 3). 

Table 3–Performance of the EvoSVM classifier on the held-out 

test set of citations 

 Performance 

EvoSVM 

Kernel 

Mean 

Recall 

(%) 

Mean 

Precision 

(%) 

F1 

 

Radial 76.92 26.32 0.392 

Epanechnikov 

Degree 3 
76.92 37.04 0.500 

Epanechnikov 

Degree 4 
76.92 29.41 0.426 

 

Note. Further analyses were conducted and the results are 

available upon request. 

Discussion 

It is important to realize that recall must be optimal for any 

machine learning approach meant to aid systematic review 

authors. For example, the Cochrane Collaboration strongly 

recommends broad and sensitive search strategies with high 

recall so that relevant research is not overlooked. In addition, 

review authors must make good-faith efforts to locate research 

missed by electronic searches. Thus, they handsearch journals, 

scan reference lists, contact subject experts, and more. This is 

why attaining very high recall is our primary goal. Boosting 

precision is a secondary goal even though modest precision is 

not as problematic as one might think when the percentage of 

provisionally eligible studies is relatively low. However, it may 

be a problem when the percentage is relatively high. Consider 

the following scenarios. 

1. Assume that 2000 citations are retrieved, 10% point to 

provisionally eligible studies, recall is perfect (100%), 

and precision is modest (50%). The classifier will 

correctly include 200 citations and incorrectly include 

another 200. The second review author of a two-

member review team has to read 400 TIABS instead 

of 2000, which reduces her workload by 80%.  

2. Same assumptions as before, except that 40% point to 

provisionally eligible studies. The classifier will 

correctly include 800 citations and incorrectly include 

another 800. The second review author has to read 

1600 citations, which reduces her workload by 20%.  

Nevertheless, the absolute reduction of workload is probably 

more important to a human than the percent reduction. 

Consider, for example, that in the second scenario just posed, 

the review author is spared reading 400 TIABS even though 

her workload is reduced by just 20%.  

Classifiers 

In early analyses, the failure of naïve Bayes and support vector 

machine (SVM) classifiers—distinct from EvoSVMs—may 

have been due to violations of statistical assumptions. For 

example, naïve Bayes assumes independence of features and 

positional independence, and SVM assumes linearly separable 

classes. Because WAODE [16] and EvoSVM [14] classifiers 

relax these assumptions, they are more appropriate for these 

data. (The WAODE classifier differentially weights tree-

augmented naïve Bayes models according to how informative 

each attribute is when set as the root of a tree. The EvoSVM 

classifier finds an optimal nonlinear hyperplane to classify data 

that are not linearly separable.) 

Although we attained perfect recall with the EvoSVM classifier 

in the training condition and very high recall for EvoSVM with 

optimization, over fitting is still a concern. This concern was 

borne out in the held-out test condition when recall degraded. 

Nevertheless, the results are promising and suggest that 

EvoSVM with a radial or Epanechnikov kernel may be an 

appropriate classifier when observational studies are eligible 

for inclusion in a systematic review.  

Limitations  

This study has serious limitations. First, the extracted features 

may not have been representative of the domain because of the 

small size of the training set. This could account for the 

degradation of performance on the held-out test set. In the 

future, more than 1800 labeled citations from the initial 

screening phase of a Cochrane review [7] will be available. We 

expect that performance will improve when the classifiers are 

trained on a much larger set of citations than was the case for 

this study. Second, the bag-of-words approach—although 

affording an appropriate baseline—ignores important phrases, 

such as case report, case series, literature review, and 

ameloblastomas of the jaws. In the future, we will explore 

various feature sets to improve classification in the held-out 

testing phase. This will entail annotating citations for relevant 

terms and phrases, including design features and possibly 



affiliation and journal. Third, we know that stacking (a method 

of weighting several classifiers) is a promising approach [3, 

17]. However, stacking probably works best with diverse 

feature sets and is therefore a method more appropriate for a 

larger study. Finally, future evaluation of classifier 

performance needs to be statistically rigorous.  

Conclusion 

The evidence suggests that supervised machine learning 

methods can potentially reduce the workload of systematic 

review authors during the initial screening phase when (1) 

observational studies of treatments for a rare condition are 

eligible for inclusion in the review, (2) the proportion of 

provisionally eligible studies is relatively small, and (3) the 

number of citations is large enough to capture representative 

features. 
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