Staff Bibliography
Document Citation

Title:
Combining SVM Classifiers To Identify Investigator Name Zones In Biomedical Articles.

Author(s):
Jongwoo Kim, Daniel X. Le, George R. Thoma.

Institution(s):
1) National Library of Medicine, NIH

Source:
San Francisco, CA. January 2012;8297.

Abstract:
This paper describes an automated system to label zones containing Investigator Names (IN) in biomedical articles, a key item in a MEDLINE (R) citation. The correct identification of these zones is necessary for the subsequent extraction of IN from these zones. A hierarchical classification model is proposed using two Support Vector Machine (SVM) classifier. The first classifier is used to identify an IN zone with highest confidence, an the other classifier identifies the remaining IN zones. Eight sets of word lists are collected to train and test the classifiers, each set contain collections of works ranging from 100 to 1,200. Experiments based on a test set of 104 journal articles show a Precision of 0.88, 0.97 Recall, 0.92 F-measure, and 0.99 Accuracy.

Publication Type: CONFERENCE

More about this article:

Abstract | Full Text (PDF)