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bstract

Digitized spinal X-ray images exhibiting specific pathological conditions such as osteophytes can be retrieved from large databases using Content
ased Image Retrieval (CBIR) techniques. For efficient image retrieval, it is important that the pathological features of interest be detected with
igh accuracy. In this study, new size-invariant features were investigated for the detection of anterior osteophytes, including claw and traction in

ervical vertebrae. Using a K-means clustering and nearest neighbor classification approach, average correct classification rates of 85.80%, 86.04%
nd 84.44% were obtained for claw, traction and anterior osteophytes, respectively.

eywords: CBIR; Cervical spine; Claw; Image processing; K-means clustering; Nearest neighbor classification; Osteoarthritis; Osteophyte; Traction; X-ray;
HANES
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. Introduction

Osteoarthritis, also known as degenerative joint disease, is
n orthopedic anomaly affecting millions of Americans, with
eople over the age of 75 exhibiting increased vulnerability.
he condition arises as a result of thinning of cartilage tissue
overing the bone joints in the human body, thereby increas-
ng friction during joint movement and causing a sensation of
ain. The joints affected by osteoarthritis often exhibit abnor-
al bone growth, resulting in formation of “bone spurs”, also

nown as osteophytes. Radiographs provide a fast and practical
pproach for visualization of features such as osteophytes, disc
pace narrowing, and subluxation, which are of great interest to
he osteoarthritis research community. Fig. 1 presents a cervical
pine X-ray image example. The boxed region highlights the
ervical spine vertebrae.
The Lister Hill National Center for Biomedical Communi-
ations, an R&D division of the National Library of Medicine,
ational Institutes of Health, has been actively conducting and
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romoting research in the area of computer- assisted analy-
is of spine X-ray images and has developed the Web-based

edical Information Retrieval System (WebMIRS). This sys-
em provides online access to a large database of spine X-ray
mages and related textual data collected as a part of the National
ealth and Nutrition Examination Surveys (NHANES). Content
ased Image Retrieval (CBIR) techniques can be used to retrieve
igitized radiographs of the spine which exhibit one or more spe-
ific physiological conditions such as the presence of anterior
steophytes. The reliability of the retrieval process depends on
he accuracy with which the pathology sought can be detected.
his research focuses on the computer-assisted discrimination
f variations of anterior osteophytes in normal cervical spine
ertebrae.

Osteophytes manifest themselves as deviations from normal
hape of the affected vertebra in certain specific locations. Infor-
ation from other locations on the vertebra, where the shape

s normal, is irrelevant and serves to degrade the efficiency
f the retrieval process. Dynamic programming-aided partial

hape matching techniques have been used by Xu et al. to detect
nterior osteophytes [1,2].

Alternative schemes to classify anterior osteophytes have
een developed, including Macnab’s classification based on
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vertebra’s anterior side; these regions of protrusion are character-
istic of anterior osteophytes. Fig. 3 provides examples of images
that were used for calculation of the four convex hull-based
features.

Table 1
Claw, traction and anterior osteophytes labels and grades for the inferior and
superior sides of each vertebra shown in the cervical images from Fig. 1

Vertebra Location Claw Traction Anterior osteophytes
grade

C3 Inferior/superior True/false True/false Moderate/slight
C4 Inferior/superior True/false False/true Severe/slight
C5 Inferior/superior False/false True/false Slight/slight
ig. 1. Cervical spine X-ray image example from the NHANES image collection
rchived at the National Library of Medicine. Vertebrae are highlighted in the
ox region.

adiology and pathology [3,4], and a grading system defined
y a medical expert to assign severity levels to the Macnab
lasses. Macnab’s classification defines claw and traction osteo-
hytes. A claw osteophyte extends from the vertebral rim and
urves in the direction of the adjacent disc. A claw region is
ypically triangular in shape and is curved at the tip of the
egion. A traction osteophyte tends to protrude horizontally, is
sually thick, does not tend to curve at the tips and does not
xtend across the intervertebral disc space. The severity grading
ystem includes three grades for osteophytes: slight, moderate
nd severe. If a vertebra does not exhibit claw or traction or
light, moderate or severe grades, the vertebra is considered
ormal.

Fig. 2 provides borders of cervical vertebrae C3–C6, as deter-
ined by an expert at the National Library of Medicine (NLM).
he top of each vertebra is referred to as the superior side, and

he bottom as the inferior side. The left side of the vertebra is
he anterior side, and the right side is the posterior side (along
he spinal column). Table 1 shows the verified claw, traction,
nd anterior osteophytes grades for the vertebrae examples in
ig. 2 for the inferior and superior sides of the each vertebra.
ata “truthing” for claw, traction, and anterior osteophytes was
erformed by an expert from NLM.

The variable quality of the spine X-ray images in the

HANES data set makes it difficult to detect certain subtle
athologies and also results in low inter/intra observer repeata-
ility. The use of relevance feedback along with partial shape
atching techniques has been investigated to help refine the con-
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Fig. 2. Image examples of cervical vertebrae C3–C6.

ent based retrieval process by incorporating judgments made
y a skilled human observer [5]. Antani et al. have investigated
artial shape matching retrieval techniques. These researchers
sed information about vertebral boundary semantics deter-
ined from an automated localization algorithm based on nine

oundary points marked by a skilled radiologist [6]. Also exam-
ned are deformable shape models that have been examined and
re capable of representing globular shapes as well as subtle
ocalized variations in features for vertebra segmentation [7].

In previous research, we investigated four size-invariant con-
ex hull features to discriminate of anterior osteophytes in
umbar vertebrae [8]. The convex hull of a set of points is the
mallest convex set that includes all of the points in the original
et [9]. The shape of a normal vertebra is convex and nearly
ectangular and is expected to be very similar to the convex hull
onstructed from its boundary points. The presence of anterior
steophytes results in deviation of the vertebra from its charac-
eristic convex shape. The convex hull features provide a means
o quantify the variation in a vertebra’s shape from a typical con-
ex shape and to identify and quantify protrusion regions on the
6 Inferior/superior False/false False/false Slight/slight

he claw and traction labels are True or False for the inferior and superior sides,
nd the anterior osteophytes grades are slight, moderate or severe for the inferior
nd superior sides.



Fig. 3. Examples of images used for convex hull-based feature calculations for
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n abnormal vertebra: (a) filled vertebra image; (b) filled convex hull image; (c)
xclusive-OR image of (a) and (b); (d) exclusive-OR image region on vertebra’s
nterior side; (e) connected component with largest area on anterior side.

In this study, new size-invariant features are proposed
or cervical vertebrae analysis, including anterior osteophytes
iscrimination and the detection of claw and traction. The pro-
osed features extend previous research [8] to detect anterior
steophytes, which utilized size-invariant-based descriptors to
uantify deviations of a vertebra’s shape from its typical con-
ex shape. The extended size-invariant features quantify the
ertebral deviation from convexity on the superior, inferior
nd anterior sides. K-means clustering and nearest neighbor
ethods are used for feature discrimination on a dataset of

90 cervical vertebrae. The remainder of the paper presents
he: (1) algorithms for feature calculations, (2) experiments
erformed, (3) experimental results and discussion, and (4)
onclusions.

. Feature calculation algorithms for discrimination of
law, traction and anterior osteophytes in cervical spine

In this study, size-invariant features were explored to dis-
riminate normal vertebrae and abnormal ones containing
law, traction and anterior osteophytes. The following sections
escribe, in detail, the algorithm for vertebral boundary determi-
ation and vertebral preprocessing prior to feature calculations.
lgorithms for computing the six proposed features are then
resented.

.1. Vertebral boundary determination and preprocessing
lgorithm

The data set used in this research, supplied by the National

ibrary of Medicine, consisted of text files for each cervical
ertebra containing 36 coordinates along the vertebra’s bound-
ry marked by experienced radiologists. The first step in the
reprocessing algorithm for determining the convex hull-based

r
t
a
g

eatures was to generate a connected boundary for the vertebra
rom the 36 coordinates by applying a B-spline technique [8].
econd, the connected boundary was filled to generate a vertebra
or processing. Let D = D(x,y) denote the filled vertebrae with
rea AD such that

=
{

1, if(x, y)is on or inside the vertebra boundary

0, otherwise

Third, the convex hull of D was determined using the quick
onvex hull algorithm [9]. Let H = H(x,y) denote the resulting
lled convex hull for vertebra D with area AH such that

=
{

1 if(x, y)is on or inside the convex hull boundary for D

0 otherwise

Let X denote the set of exclusive-OR points between D and
such that X(x,y) = D(x,y) ⊕ H(x,y). X is expected to contain

ne or more connected regions, for each concave vertebral side
epresentative of abnormality in vertebral shape. Let AX denote
he area of the exclusive-OR region. Using 8-connectivity, let

denote the number of unique connected components within
. Fourth, the centroid (x̄D, ȳD) of the filled vertebra, and

he centroids (x̄i, ȳi), i = 1, . . ., k, of the k connected compo-
ents with areas A1, . . ., Ak within X were calculated. Fifth,
he posterior side of the vertebra within the exclusive-OR
mage X was eliminated, since we are only analyzing ante-
ior, superior, and inferior side features and the posterior side
nformation is irrelevant. The posterior side of the vertebra was
dentified from the image X as the set M = {m1, . . ., mn} of
onnected components with centroids (x̄j, ȳj) with coordinates
reater than x̄D − R and less than ȳD − Q, where R and Q
ere small offsets from the centroid positions. Fig. 4 presents

n example of bounding the posterior side of a vertebra, as
hown with dashed lines. The area of the posterior side was
alculated as

P =
n∑

j = 1
mj ∈ M

Amj ,

here Amj denotes the area of the mjth connected component.
ixth, the area of the inferior side, denoted as AI, was com-
uted using a similar coordinate offset approach to isolate that
ide’s connected components. Seventh, the area AS of the supe-
ior side, was calculated using an analogous procedure. Eighth,
he area AT of the anterior side of the vertebra was similarly
alculated. Ninth, the orientation of the vertebra was estimated
rom the line connecting corner points of the posterior side. The
orner points of the posterior side correspond to the topmost and
ightmost points of the vertebra. Tenth, the vertebra was rotated
y the angle estimated from the posterior side to an approxi-
ately horizontal orientation. Eleventh, moment normalization

10] was performed to facilitate vertical alignment of the ante-

ior and posterior sides of the vertebra. Twelfth, the area AZ of
he moment-normalized vertebra was computed. Thirteenth, the
nterior side of the vertebra was flipped across the horizontal axis
oing through the centroid of the moment-normalized vertebra,
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ig. 4. Image of a cervical vertebra with its posterior side bounded by dashed
ines.

nd the exclusive-OR area AF between the posterior and flipped
nterior sides was computed. The areas of the concave portions
f the vertebra on the inferior, superior, and anterior side, as well
s the moment normalized vertebra regions, provided the basis
or feature calculations.

.2. Description of size-invariant features

The following vertebra descriptors were calculated: (1) the
atio of the area of the filled vertebra to the area of the filled
onvex hull as given by the equation F1 = AD/AH, (2) the ratio
f the area of the exclusive-OR image with the posterior area
emoved to the area of the filled convex hull as expressed by
2 = (AX − AP)/AH, (3) the ratio of the area of the inferior side
f the vertebra to the area of the filled vertebra as given by
3 = AI/AD, (4) the ratio of the area of the superior side of the ver-

ebra to the area of the filled vertebra as expressed by F4 = AS/AD,
5) the ratio of the area of the anterior side to the area of the filled
ertebra as provided by F5 = AT/AD, and (6) the ratio of the area
f the exclusive-OR of the moment normalized flipped anterior
ide with the posterior side to the area of moment normalized
ertebra as given by F6 = AF/AZ. An image illustration for a ver-
ebra is presented in Fig. 5. Fig. 5(a) shows the image of the
lled C3 vertebra from Figs. 2 and 5(b) shows the image of the

lled convex hull of the vertebra shown in Fig. 5(a). Fig. 5(c)
hows the anterior, superior and inferior sides of the regions
xtracted by XOR-ing the filled vertebra image with its filled
onvex hull image. Fig. 5(d) shows the moment-normalized
ertebra.

a

b
o
d

ertebra from exclusive-OR of filled vertebra and associated convex hull images
or C3 from Fig. 3(a): (a) filled vertebra image; (b) filled convex hull image; (c)
nferior, superior and posterior sides; (d) moment normalized image.

. Experiments performed

The experimental data set for evaluating the proposed fea-
ures was provided by the National Library of Medicine and
ontained: (1) a database table listing vertebra name, inferior
nd superior side vertebra, verified values including a True/False
abel for the presence of claw, a True/False label for the pres-
nce of traction and a grade of slight, moderate or severe for
nterior osteophytes and (2) text files containing 36 coordinates
f vertebra boundaries for cervical vertebrae. The verified values
or each vertebra and the labeling of the 36 coordinates along
he vertebra boundary were provided to NLM by expert radi-
logists. Based on intersecting the database file providing the
erified data and the available text files containing the verte-
ral boundary coordinates, there were a total of 390 cervical
ertebrae for which feature analysis and claw, traction and ante-
ior osteophytes discrimination were performed. For this study,
nterior osteophytes discrimination was performed on a nor-
al/abnormal basis, with the inferior and/or superior side of any

ertebra labeled as “moderate” or “severe” being called abnor-
al. Otherwise, the vertebra was labeled as normal for anterior

steophytes discrimination. Finally, in order to evaluate the pro-
osed features, the verified data for the inferior and superior
ides for each vertebra was logically ORed. For example, if the
nferior side of a vertebra was verified as having claw and the
uperior side was verified as not having claw, a label of claw
as used for the vertebra for classification purposes. Table 2
resents the dataset breakdown of the claw, traction and anterior
steophytes (normal/abnormal) classes for the cervical verte-
rae data set that were examined in this study. Included in the
ervical vertebrae dataset are 97 C3s, 99 C4s, 96 C5s, 76 C6s
nd 22 C7s.
Claw, traction, and the presence of anterior osteophytes are
ased on deviations from the normal square/rectangular shape
f a vertebra. The proposed features exploit and quantify such
eviations, which can be considered characteristic of claw, trac-



Table 2
Cervical vertebrae datasets examined for detecting claw, traction and anterior
osteophytes

No. of cervical vertebrae

Claw/no claw 242/148
Traction/no traction 212/178
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nterior osteophytes
(abnormal/normal)

258/132 (82 severe, 176 moderate)

ion and anterior osteophytes. The proposed features capture
eviations in the region(s) of the vertebra where shape distor-
ion, if it is present, is expected to be detectable. For example,
rom Fig. 5, the anterior side area captures deviation from nor-
al square/rectangular shape in the region where traction might

e observed. This deviation is quantified, relative to the area of
he vertebra, in the feature F5. The inferior side area provides
n indicator of deviation in the region where claw might be
bserved. This deviation is quantified relative to the area of the
ertebra in feature F3. Because different vertebrae have differ-
nt degrees of curvature along the boundary, all of the proposed
eatures described in Section 2.2 were investigated for detecting
he three anomalies.

Based on combining the verified data for the inferior and
uperior sides of the vertebra, as described above, a single
abel for each of the three anomalies was used for the devel-
pment of similar but separate classification schemes for the
law, traction and anterior osteophytes cases. Twenty randomly
enerated training and test sets were generated for claw/no
law, traction/no traction and anterior osteophytes discrimina-
ion (abnormal/normal). Ninety percent of the feature vectors for
law and no claw were used for training and the remaining 10%
f the feature vectors were utilized as test data. Similar train-
ng and test sets were generated for the traction/no traction and
bnormal/normal anterior osteophytes cases, where “abnormal
steophytes” refers to moderate and severe cases, as labeled by
he expert. Note that the training and test sets do not coincide for
ach of the three anomalies because the combination of anoma-
ies may differ for different vertebra. The following process was
erformed for each classification problem (claw/no claw, trac-
ion/no traction and abnormal/normal osteophytes). (1) Compute
he mean and standard deviation of the features from the training
ata for each class. (2) Normalize the training data by subtracting
he mean and dividing by the standard deviation. (3) Estimate
he number of clusters for each class using subtractive cluster-
ng [11,12]. (4) Using the training data and estimated number of
luster centers for each class, perform K-means clustering [13]
o determine cluster centers for each class. (5) Normalize the
est set using the means and standard deviations computed from
he training data. (6) Perform nearest neighbor classification for
he test data [14]. For each test feature vector, the Euclidean dis-
ance is calculated to the cluster centers for each class. The test
ector is labeled as belonging to the class for which the test vec-

or has the minimum Euclidean distance. (7) Compute the true
ositive and true negative classification rates for the test data.
he true positive rate is the percentage of correctly classified
ertebrae with claw (similar for traction and abnormal vertebrae

t
i
a

or anterior osteophytes), and the true negative rate is the per-
entage of correctly classified vertebrae with no claw (similar
or no traction and normal vertebrae for anterior osteophytes).
8) Repeat steps 1–7 for all 20 randomly generated training and
est sets.

Note that the same feature vectors were used for claw/no claw,
raction/no traction and abnormal/normal for anterior osteo-
hytes, but the feature vectors were included in the training
nd test sets based on the feature vector (vertebra class assign-
ents) for claw, traction and anterior osteophytes, respectively.
or example, for claw/no claw classification, the makeup of the

raining and test sets differed from the makeup of the training
nd test sets for the traction/no traction classification. A slightly
odified version of this process was explored for detecting ante-

ior osteophytes. For anterior osteophytes, vertebrae are labeled
s having slight, moderate or severe grades. For this study, ver-
ebrae with moderate or severe grades were labeled as abnormal,
nd vertebrae with slight grades were called normal. In classifier
lgorithm development, cluster centers were determined for the
raining data with slight (normal), moderate, and severe grades,
eparately. Nearest neighbor classification was performed based
n finding the minimum Euclidean distance for a given feature
ector to the cluster centers determined from the training data
or the slight (normal), moderate, and severe grades. The feature
ector (vertebra) closest in Euclidean distance to the cluster cen-
ers for either the moderate or severe grade cases was classified
s abnormal. Otherwise, it was classified as normal.

Four convex hull-based features [8] previously investigated
or the detection of anterior osteophytes in lumbar vertebrae
ere used as a baseline method for comparison. The four convex
ull-based features include F1 and F2 presented in this paper,
he ratio of the sum of the areas of all regions with centroids in
he exclusive-OR image X contained on the anterior half of the
ertebra to the filled vertebra area AD, and the ratio of the largest
egion with centroid in the exclusive-OR image X contained in
he anterior half of the vertebra to the filled vertebra area AD. For
hese feature calculations, the anterior half of the vertebra was
etermined based on finding the orientation of the vertebra and
onstructing a dividing line at the orientation angle through the
ertebra’s centroid. The anterior side was defined as the region
elow the dividing line. Fig. 3 shows an image example of the
egions within vertebra used for feature calculations.

The feature vectors examined for claw/no claw, traction/no
raction and abnormal/normal anterior osteophytes include the
ix proposed features (F1–F6), features F1–F5 (omitting the
asymmetry index” F6), and the baseline convex hull-based fea-
ures. Average and standard deviation for the true positive and
rue negative rates were calculated over the 20 randomly gen-
rated training and test sets for analysis and comparison of the
eatures.

. Results and discussion
This section presents experimental results for claw/no claw,
raction/no traction and abnormal/normal osteophyte discrim-
nation for cervical vertebrae data using the experimental
pproach presented in the previous section.



Table 3
Cervical vertebrae K-means and nearest neighbor test detection results for six convex hull-based features over 20 randomly generated training and test sets

Iteration % Correct claw % Correct no claw % Correct traction % Correct no traction % Correct abnormal % Correct normal

1 84.00 71.43 91.67 80.00 85.19 83.33
2 88.00 78.57 79.17 100.00 92.59 66.67
3 88.00 64.29 83.33 86.67 96.30 66.67
4 80.00 78.57 87.50 93.33 77.78 83.33
5 84.00 71.43 83.33 93.33 81.48 83.33
6 80.00 78.57 100.00 73.33 92.59 66.67
7 84.00 92.86 79.17 100.00 85.19 83.33
8 96.00 57.14 79.17 100.00 81.48 66.67
9 88.00 71.43 83.33 86.67 85.19 66.67
10 88.00 78.57 87.50 80.00 85.19 66.67
11 92.00 64.29 91.67 73.33 81.48 83.33
12 80.00 78.57 83.33 86.67 92.59 83.33
13 84.00 71.43 83.33 86.67 77.78 75.00
14 80.00 78.57 83.33 86.67 88.89 83.33
15 84.00 85.71 83.33 86.67 77.78 83.33
16 96.00 57.14 83.33 86.67 85.19 83.33
17 76.00 85.71 91.67 66.67 81.48 75.00
18 92.00 71.43 87.50 73.33 74.07 91.67
19 84.00 85.71 83.33 80.00 81.48 83.33
20 88.00 64.29 95.83 60.00 85.19 66.67
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ean 85.80 74.29 86.04
tandard deviation 5.43 9.67 5.62

Table 3 presents the cervical vertebrae test results for the
law/no claw, traction/no traction and abnormal/normal for ante-
ior osteophytes cases using the clustering technique presented
bove with the six proposed features over 20 randomly generated
raining and test sets. These experiments were performed using
90 cervical vertebrae with the distribution of claw/no claw, trac-
ion/no traction and abnormal (moderate and severe)/normal for
nterior osteophytes, as described in Table 2. In Table 3, the
rst column shows the randomly generated training and test set

teration number. Columns 2 and 3 present the claw/no claw
esults. Columns 4 and 5 give the traction/no traction results.
olumns 5 and 6 show the abnormal/normal results for detect-

ng anterior osteophytes. Vertebrae labeled moderate or severe
re considered abnormal. Vertebrae labeled as slight are taken
s normal.

Table 4 gives the number of clusters used determined using
he subtractive clustering technique from the training data for
-means clustering and nearest neighbor classification over the
0 training and test sets. Note that the vertebrae used in the
raining and test sets are different for the claw/no claw, trac-
ion/no traction and abnormal/normal anterior osteophytes cases
ecause each vertebra has different claw, traction or osteophytes
haracteristics.

Table 5 presents the average cervical vertebrae test results
or the claw/no claw, traction/no traction and abnormal/normal
or anterior osteophytes cases using the clustering technique pre-
ented above with five features (F1–F5), leaving out the moment
ormalization feature F6, over 20 randomly generated training
nd test sets. These experiments were performed using 390 cer-

ical vertebrae with the distribution of claw/no claw, traction/no
raction and abnormal (moderate and severe)/normal for ante-
ior osteophytes, as shown in Table 2. Columns 2 and 3 present
he claw/no claw results. Columns 4 and 5 give the traction/no
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84.00 84.44 77.08
10.90 5.84 8.50

raction results. Columns 5 and 6 show the abnormal/normal
esults for detecting anterior osteophytes. As mentioned earlier,
ertebrae labeled moderate or severe are considered abnormal,
nd those labeled as slight are taken as normal.

Table 6 presents the average cervical vertebrae claw/no claw,
raction/no traction and abnormal/normal anterior osteophytes
est results over the same 20 randomly generated training and
est sets using the baseline convex hull-based features [8] as a
enchmark for comparison to the extensions developed for the
onvex hull-based features.

The results presented in Tables 3–6 provide for several obser-
ations. First, from Tables 3–5, the six-feature case (F1–F6)
rovided higher average correct results than the five-feature case
F1–F5) and the baseline convex hull-based features. Table 7
ummarizes the average percentage improvement of the six
ize-invariant features over the five feature and baseline convex
ull-based feature cases for claw/no claw, traction/no traction
nd abnormal/normal osteophytes. From Table 7, the proposed
eatures (F1–F6) consistently outperformed the baseline convex
ull-based features for discrimination of claw, traction, and ante-
ior osteophytes. The baseline convex hull-based features were
eveloped to highlight protrusion regions on the anterior side
f the vertebra, characteristic of osteophytes. The proposed fea-
ures provide an alternative approach to highlight the protrusion
egions, emphasizing the deviation of a vertebra’s shape from the
ypical rectangular shape. F1 and F2 highlight the deviation of a
ertebra’s shape from the rectangular shape based on the size of
oncave regions around the vertebra. F3–F5 provide measures of
he concavity of the vertebra on the inferior, superior and ante-

ior sides, respectively, which together can be used to localize
rotrusion regions characteristic of claw, traction and/or anterior
steophytes. For instance, high ratios for F3 and F5 for a vertebra
ay indicate that there is a protrusion region on the inferior side



Table 4
Number of cluster centers used for K-means clustering for nearest neighbor classification for claw/no claw, traction/no traction and abnormal/normal anterior
osteophytes

Iter. No. of clusters
claw

No. of clusters
no claw

No. of clusters
traction

No. of clusters
no traction

No. of clusters
severe osteophytes

No. of clusters
moderate osteophytes

No. of clusters
normal

1 4 4 3 6 8 4 4
2 4 5 3 5 8 3 3
3 3 5 3 6 6 4 3
4 4 4 3 5 5 4 3
5 4 6 3 6 8 4 5
6 4 4 3 8 7 4 3
7 4 6 3 5 8 5 4
8 3 4 3 5 6 3 4
9 4 4 4 5 9 3 4

10 4 5 3 8 6 3 5
11 3 5 3 5 8 3 4
12 4 4 3 5 6 3 4
13 4 6 4 6 6 6 4
14 4 4 3 5 6 4 4
15 4 6 3 5 7 3 4
16 3 4 3 5 7 4 3
17 4 5 2 5 6 3 3
18 4 6 2 5 8 4 4
19 4 5 3 7 7 4 3
20 4 5 3 8 7 3 3

Note that abnormal osteophytes is based on combining the severe and moderate osteophytes cases.

Table 5
Cervical vertebrae K-means and nearest neighbor test detection results for five convex hull-based features over 20 randomly generated training and test sets

Claw No claw Traction No traction Abnormal osteophytes Normal

Mean % correct 85.20 70.70 81.30 78.00 86.30 65.80
Standard deviation 7.90 13.31 7.09 10.84 6.37 10.44

Table 6
Cervical vertebrae K-means and nearest neighbor test detection results for baseline convex hull-based features [8] over 20 randomly generated training and test sets

Claw No claw Traction No traction Abnormal osteophytes Normal
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c

F
B

ean % correct 63.00 78.20 77.90
tandard deviation 8.70 15.90 10.91

f the vertebra. A high value for F5 with relatively low values
or F3 and F4, respectively, may be an indicator of a protrusion
egion on the anterior face of the vertebra, which could be char-
cteristic of traction. Part of the rationale for introducing feature
6 was to quantify the relative symmetry between the anterior

nd posterior sides of the vertebra in order to identify potential
rotrusion regions which may be convex. This feature appears
o contribute to successful discrimination of claw, traction and
steophytes, providing 2.10%, 5.37% and 4.71% improvement

a
o
o
s

able 7
ercentage improvement in average claw/no claw, traction/no traction and abnormal
onvex hull-based features

% Improvement claw/no claw % Impro

eatures F1–F5 2.10 5.37
aseline convex hull-based features 9.45 15.02
62.10 81.70 60.52
15.16 8.10 11.62

f claw, traction and osteophytes discrimination when combined
ith features F1–F5.
Second, from Table 3, the proposed features F1–F6 yielded

he highest average correct results for discriminating traction/no
raction, with an overall average of 85.02% (average of traction

nd no traction results). This compares to an overall average
f 80.05% for claw/no claw and 80.76% for abnormal/normal
steophytes. The features F1–F6 are able to highlight protru-
ion regions and asymmetrical shape that is often characteristic

/normal anterior osteophytes between F1–F6 features and F1–F5 and baseline

vement traction/no traction % Improvement abnormal/normal osteophytes

4.71
9.66



Table 8
p-Value associated with the six convex hull-based features for the claw, traction
and anterior osteophyte cases

Serial
number

Name of
feature

p-Value

Claw Traction Anterior
osteophyte

1 F1 0.0048 0.7699 0.4207
2 F2 0.0002 0.1946 0.5127
3 F3 0.0004 0.0025 0.2024
4 F4 0.8064 0.0252 0.0723
5 F5 <0.0001 <0.0001 0.0039
6 F6 0.3103 0.0001 0.0033
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he statistically significant features for each pathological condition have been
rinted in bold.

f claw, traction and osteophytes. F6 provides the capability
o quantify the location of protrusion regions relative to the
ertebra’s shape and inherent curvature, as manifested on the
osterior side of the vertebra.

Logistic regression [15] was performed on the six features
F1–F6) for the cervical spine data set to determine which fea-
ures are statistically significant in the discrimination of claw,
raction and anterior osteophytes, respectively. Table 8 shows
he p-value from the regression analysis associated with each of
he six proposed features (F1–F6) for discriminating claw, trac-
ion and anterior osetophytes in cervical vertebrae. A p-value of
ess than or equal to 0.05 implies that the associated feature is
tatistically significant in the discrimination of a specific abnor-
ality [15]. From Table 8, it is observed that the features F1–F3

nd F5 are statistically significant for detecting the presence
f claw in cervical vertebrae. The features F3–F6 are statisti-
ally significant for detecting traction, and anterior osteophytes
an be best identified by the features F4–F6. Therefore, it can
e inferred that the feature F6 is of greater significance to the
etection of traction and anterior osteophytes. This is in agree-
ent with the results shown in Table 7 where, the addition of the

eature F6 to the reduced feature set F1–F5 resulted in the least
mprovement (2.10%) in the average correct classification for
he claw/no claw case. Feature F6 involved using moment nor-
alization for computing the vertebra’s area and exclusive-OR

rea of the flipped anterior side about the axis through the cen-
roid of the vertebra. Moment normalization was used in order
o mitigate the effect of vertebra orientation and skewness in
hape.

Finally, the experimental results show the potential for
he proposed size-invariant features to identify key vertebra
ttributes such as claw, traction and osteophytes. The same
ix features have achieved comparable results in detecting the
hree vertebrae attributes, with slightly better recognition results
or traction. The features F1–F6 were computed based on a
ertebra representation of 36 points. In previous research, the
aseline convex hull-based features were developed based on
5-point vertebra representations [8], providing slightly more

etail in representing the vertebra boundary. For this research,
he K-means clustering and nearest neighbor approach labeled
ertebrae as containing claw, traction or osteophytes based on
eparately trained models. Classification was performed using
xpert grading of vertebrae for the presence of claw, traction,
nd osteophytes.

. Conclusions

The overall goal of this research is the development of
eatures and techniques that can be incorporated into a content-
ased image retrieval system to facilitate the query of images
ontaining vertebrae with specific types of conditions related
o osteoarthritis. New size-invariant descriptors were inves-
igated for the discrimination of claw, traction, and anterior
steophytes in cervical vertebrae. Using a K-means and nearest
eighbor technique, test results yielded correct average discrim-
nation rates of 85.80%, 86.04% and 84.44% for claw, traction,
nd anterior osteophytes, respectively, with corresponding aver-
ge correct normal vertebrae discrimination rates of 74.29%,
4.00% and 77.08%, respectively. Logistic regression analy-
is of the proposed features shows that the proposed features
ontain statistically significant information for the discrimina-
ion of claw, traction and anterior osteophytes. Exploring fuzzy
ogic-based techniques to provide different degrees of associa-
ion or membership with each of the attributes is currently under
nvestigation to improve classification capability.
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