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Motivation 
What impairs the acceptance of CBIR Systems ?
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Motivation

The problem 
is deeper than 
one first 
imagine!
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The Problem – Performance Gap
A CBIR system should bring the 
meaningful answer in a timely manner, 
being integrated to the clinical workflow
Employs the necessary means to do so:

Feature selection
Indexing
Query optimization
Evaluation
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Feature Selection
A large number of features extracted from the images

Dimensionality Curse!1

Many features are correlated 
Blurs the images discrimination/separability2,3

Feature Selection => aims at keeping the features that 
best differentiate the images
Approaches: decision trees, association rules, fractal 
theory, … 

Goal: to get few and highly distinguishing features. 
Challenge: How to select them… and fast
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Indexing
Access Methods to accelerate the query processing
Similarity Search

k-Nearest Neighbor Query: “Find the 5 images most 
similar to the John Doe’s XRay-Chest” 
Range Query: “Find the images that differ from the 
John Doe’s XRay-Chest up to 10 units”

Metric Access Methods – only the features and distances 
are necessary (e.g.: M-tree4, Slim-tree5,6, Omni Family7, 
…)

Goal: to keep up with the voluminous and ever increasing 
number of images and complex data 

Challenge: speed and scalability
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Query optimization
Develop optimized query algorithms inside de Database 
Management Systems8,
Make the most efficient query plan (pipeline) to perform 
complex queries9,
Prepare beforehand the most efficient plans to execute 
the most frequently asked queries,
“New rules to a new world”, dealing with images and 
complex data.

Goal: to have the  DBMS extended to query images by 
content 

Challenge: image data type defined and integrated to 
DBMS
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Results evaluation
Subjective: depends on the user interest at 
the moment,
Include the user in the refinement step 
(Relevance Feedback)10

Create user profiles.

Goal: to allow real comparison among different 
methods/ algorithms 

Challenge: Ground truth, human perception
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Integration to other Clinical systems

PACSPACSPACS

RISRISRIS CADCADCAD

CBIRCBIRCBIR
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Integration to other Clinical systems

PACSPACSPACS

RISRISRIS CADCADCAD

CBIRCBIR
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